

i

Requirements Specification

i

Report Title: OpenLV Solution Requirements Specification

Report Status: Issued

Project Ref: WPD/EN/NIC/02 – OpenLV

Date: 20 September 2017

Document Control

 Name Date

Prepared by: Tim Butler August 2017

Reviewed by: Richard Ash

Richard Potter

August 2017

August 2017

Recommended by: Dan Hollingworth 20 September 2017

Approved (WPD): Mark Dale 20 September 2017

Revision History

Date Issue Status

20 September 2017 1.0 Issued pre-FATs Part 2

15 August 2017 0.1 Draft issued for

comment pre-FATs

Part 1.

ii

DISCLAIMER

Neither WPD, nor any person acting on its behalf, makes any warranty, express or implied, with respect to the use of any
information, method or process disclosed in this document or that such use may not infringe the rights of any third party or
assumes any liabilities with respect to the use of, or for damage resulting in any way from the use of, any information,
apparatus, method or process disclosed in the document.

© Western Power Distribution 2017

No part of this publication may be reproduced, stored in a retrieval system or transmitted, in any form or by any means
electronic, mechanical, photocopying, recording or otherwise, without the written permission of the Future Networks
Manager, Western Power Distribution, Herald Way, Pegasus Business Park, Castle Donington. DE74 2TU.

Telephone +44 (0) 1332 827446. E-mail wpdinnovation@westernpower.co.uk

mailto:wpdinnovation@westernpower.co.uk

iii

Contents

1 Introduction ... 5

1.1 Purpose.. 5

1.2 Background .. 5

1.3 OpenLV Solution Overview ... 5

1.4 LV-CAP™ Software Platform Overview ... 8

1.5 Report Structure .. 9

2 Grouping of the OpenLV Solution Requirements .. 9

3 OpenLV Solution Requirements ... 11

3.1 Overall System Requirements ... 11

3.2 Intelligent Substation Devices (ISDs) ... 12

3.3 LV-CAP™ Software Platform .. 16

3.4 LV Monitoring Equipment ... 19

3.5 Temperature Sensing .. 21

3.6 LV Network Meshing ... 23

3.7 Load Profile Predictor Container ‘App’ ... 25

3.8 CSV Data Recorder Application ... 26

3.9 LoadSense Container ‘App’ ... 27

3.10 Dynamic Thermal Ratings Application ... 28

3.11 Centralised Systems ... 29

3.12 Communications .. 32

3.13 Overall System ... 37

4 Appendix A – LV-CAP™ API .. 39

5 Appendix B – Nortech Application Container .. 40

6 Appendix C – Lucy Electric Application Container ... 41

iv

Table of figures

Figure 1: OpenLV Method 1 Overview .. 6

Figure 2: OpenLV Method 2 Overview .. 7

Figure 3: LV-CAP™ Method 3 Overview ... 7

Figure 4: LV-CAP™ Software Platform Overview ... 8

Table of tables

Table 1: Grouping of Requirements ... 9

 Page 5 of 41

Requirements Specification

1 Introduction

1.1 Purpose

The Purpose of this document is to provide a record of the requirements for the overall
OpenLV solution that will be required to support Project trials for the three Methods outlined
in the Full Submission Proforma (OpenLV Bid document).

1.2 Background

The FSP provides a high-level description of the overall OpenLV solution that will be required
to support Project trials for the three Methods.

In order to define the requirements for the overall OpenLV Solution, the key hardware and
software components have been defined, then the requirements for each component have
been identified.

In order to prioritise requirements, the MoSCoW approach has been utilised. This approach
is a well-known technique used in business analysis and software development to reach a
common understanding with stakeholders on the importance they place on the delivery of
each requirement.

Each requirement has been identified and prioritised using the MoSCoW approach, that
stands for Must, Should, Could and Will not:

• M – Must have this requirement to meet the business needs;

• S – Should have this requirement if possible, but project success does not rely on it;

• C – Could have this requirement if it does not affect anything else in the project; and

• W – Will not deliver this requirement at the current time, but it could be delivered at

a later date.

1.3 OpenLV Solution Overview

The OpenLV solution to be trialled within the OpenLV project, utilises a distributed
intelligence device, built on a software platform, LV-CAP™, developed to enable multiple
applications and solutions to be deployed in a single enclosure. The trials will, across three
‘Method’ areas, demonstrate that the platform can:

• monitor the network in real-time;

• process the collected data to determine the need for action to manage the network;

• implement that action if necessary;

• provide this data to third party companies and equipment; and

• provide this data to community groups.

 Page 6 of 41

Requirements Specification

1.3.1 Method 1: LV network capacity uplift

Method 1 will demonstrate the capability of the LV-CAP™ platform to perform measurements
and control from within an HV/LV substation, in 60 substations (30x pairs).

To demonstrate this, the deployed trial hardware will utilise monitored data to predict future
network load and when necessary, automatically share the feeder load between two
transforms. This will be demonstrated through direct control of ALVIN Reclose™ circuit
breakers installed in the substations at either end of the utilised feeder in a subset (5x pairs)
of Method 1 installations.

Figure 1: OpenLV Method 1 Overview

 Page 7 of 41

Requirements Specification

1.3.2 Method 2: Community engagement

Once deployed, the LV-CAP™ platform can be used to provide data to community groups or
individual customers. LV-CAP™ platforms deployed for Method 2 implementation will be
identical to those deployed for Method 1 but will not, in any situation, have ALVIN Reclose™
devices installed as well.

Figure 2: OpenLV Method 2 Overview

10 LV-CAP™ devices have been allocated for the implementation of Method 2 activities.

1.3.3 Method 3: OpenLV extensibility

Once deployed, the LV-CAP™ platform can be used to provide a secure platform for third
parties to provide services to the DNOs, customers, and wider industry. This may take the
form of pure Applications, or a combination of Applications and connected external devices.
As with Method 2, however, Method 3 installations will not, in any situation, have ALVIN
Reclose™ devices installed as well.

Figure 3: LV-CAP™ Method 3 Overview

10 LV-CAP™ devices have been allocated for the implementation of Method 3 activities.

 Page 8 of 41

Requirements Specification

1.4 LV-CAP™ Software Platform Overview

The LV-CAP™ software platform is designed to enable a single hardware deployment to
monitor the network and make the gathered data available to multiple software Applications
running on the platform. These Applications could be developed by multiple manufacturers
and control various unrelated network assets without any application being influenced or
affected by another.

This enables a single investment in the hardware to support deployment of multiple solutions
to benefit the network.

The figure below demonstrates the deployment of software applications within the LV-CAP™
platform under the OpenLV Project.

Figure 4: LV-CAP™ Software Platform Overview

 Page 9 of 41

Requirements Specification

1.5 Report Structure

The structure of this document is as follows:

• Section 2: Grouping of the OpenLV Solution Requirements – Provides an overview of

the key components of the overall system.

• Section 3: OpenLV Solutions Requirements – Outlines the requirements for each

component of the overall OpenLV solution.

• Section 4: The Way Forward – Outlines how the requirements will be used within the

Project.

2 Grouping of the OpenLV Solution Requirements

The key components of the overall OpenLV solution have been assessed and requirements
have been grouped under the titles outlined in

Table 1: Grouping of Requirements

Group Description

Intelligent Substation Devices The Intelligent Substation device is an enclosure, containing a ruggedised
PC capable of being installed in harsh environments and interface

connections to receive data from external sensors.

Applications installed within the LV-CAP™ Software Platform gather data,
store it locally, process if necessary and send requested information back

to central servers.

LV-CAP™ Software Platform The LV-CAP™ software platform runs on the intelligent substation devices.
This is an operating system that enables multiple Applications to be
installed in software containers on a single device. The software also

provides Apps with access to data provided from the sensors which are
installed in each LV substation.

LV Monitoring Equipment LV network monitoring provides the core data to be utilised by all Apps
that will be deployed on the Intelligent Substation Devices.

Temperature Sensing Temperature sensors are required to monitor the temperature of the LV
transformer and ambient air temperature. This data is provided to the

relevant container ‘Apps’ within the LV-CAP™ software platform and can be
used for Dynamic Thermal Rating (DTR) of LV transformers to release

additional capacity from existing LV network assets.

LV Network Meshing This section details the hardware to be installed and the associated
software to enable meshing of individual feeders between two LV

substations.

This has the potential to release additional capacity from existing LV
network assets.

Load profile predictor
application

A load profile predictor application is required to utilise historical load on
both the transformer and specific LV feeder and predict the likely load

profile for the future.

 Page 10 of 41

Requirements Specification

Group Description

CSV data recorder application Storage of all data captured by the system, information generated by any
applications and a record of any actions implemented are required to be

stored on non-volatile memory within the ISD.

LoadSense
Loadsense is an application designed to respond to outputs from

Weathersense relating to real time and predicted network loading.
These outputs may trigger an immediate (relatively) response or be a

prediction alert, effectively stating that "unless network load is less than
predicted, the transformer is going to exceed its RTTR rating in x-hours.”
Loadsense would schedule a LV network meshing to occur prior to that
time slot, if the networks to be connected also have sufficient capacity.

Communications This section covers the applications relating to communications to and
from the deployed trial devices.

Communications are required between deployed devices and separate,
centralised data servers and between individual LV-CAP™ platforms.

Centralised System
Requirements

Centralised systems are required to enable ‘Apps’ to be deployed on the
intelligent substation devices and to store data that is required for the

assessment of Project trials.

Overall System Requirements This group covers all other requirements not captured under the groups
defined above.

The numbering system used to identify individual requirements within Section 3 maintains
traceability of the individual requirements identified. The numbering system is as follows:

• I:XXX: Provides relevant information regarding the overall solution;

• M:XXX: Outlines a ‘must have’ requirement, these are requirements that are needed

to ensure the success of the Project;

• S:XXX: Outlines a requirement that ‘should’ be provided, if possible, but project

success does not rely on it;

• C:XXX: Outlines a requirement that ‘could’ be provided, but does not affect anything

else in the project;

• W:XXX: Outlines requirements that ‘will not’ be delivered at the current time, but

could be delivered at a later date.

 Page 11 of 41

Requirements Specification

3 OpenLV Solution Requirements

EA Technology undertook an InnovateUK Energy Catalyst project with the University of
Manchester and Nortech Management Ltd to develop a Common Application Framework for
LV Network Management. The core software platform developed under the project is called
Low Voltage Common Application Platform (LV-CAP™) and consists of a number of Docker
containers communicating with each other using MQTT.

This section outlines the functional requirements and necessary interfaces with 3rd party
equipment and software for LV-CAP™. The OpenLV Project will deploy 80 LV-CAP™ devices
to test the platform as outlined above.

The final ‘product’ delivered will be referred to as the OpenLV Solution, acknowledging that
the specific combination of hardware and software that results from this requirements
specification will not be implemented again outside of the OpenLV Project, although the
requirements will likely be utilised as a base of core functionality for future deployments.

3.1 Overall System Requirements

The purpose of the OpenLV Project is to test the LV-CAP™ platform’s capabilities and
demonstrate its ability to provide benefits to the industry, communities and third-party
companies. Therefore, the trial system deployed by the project must demonstrate that it
meets the below requirements.

• gather voltage and current data relating to the LV network;

• store this data for a period of time suitable to meet the requirements of the

applications running on the platform;

• make this data available to multiple applications running on the platform;

• enable multiple applications to process and manipulate this data;

• transmit the pertinent, generated information back to central location(s), without

requiring the raw data to be transmitted as well;

• be able to transmit the raw data to a data repository if required;

• enable deployed applications to make decisions regarding the LV network, based on

the monitored data;

• implement those decisions autonomously if deemed appropriate for the network

based on decision processes agreed with WPD;

• Make data and information, not considered operationally sensitive by the DNOs,

available to communities, academia and third-party businesses.

In order to achieve these above requirements, a number of applications are necessary with
specific, additional requirements detailed in the Annexes to this document.

 Page 12 of 41

Requirements Specification

3.2 Intelligent Substation Devices (ISDs)

3.2.1 Overall Statement

I:001. The Intelligent Substation device is an enclosure, containing a ruggedised PC
capable of being installed in harsh environments and interface connections to
receive data from external sensors.

I:002. Applications installed within the LV-CAP™ Software Platform gather data, store it
locally, process if necessary and send requested information back to central
servers.

I:003. The ISDs are responsible for providing the LV-CAP™ platform and associated
software containers with a computing environment suitable for implementation
for the duration of the OpenLV Project.

I:004. The Operating System for LV-CAP is GNU/Linux. The LV-CAP™ core software will
be installed on the operating system along with the following containers,
designed to deliver the required OpenLV solution functionality.

• LV-CAP™ Software Platform

• LV Monitoring

• Temperature Sensing

• Data Upload Application

• Dynamic Thermal Ratings Application

• Load Profile Predictor

• LoadSense

• ALVIN Reclose™ Interface Application

• CSV Data Recorder

• Management Comms Application

• Peer to Peer Communications Application

I:005. The requirements for each element of the ISDs are detailed later in this section.

3.2.2 Services required

I:006. The services detailed here refer to those required to be provided by the ISD
platform as a whole, rather than individual elements, either hardware or
software, within the platform.

Processing capability

M:001. The computational hardware must be based upon an industrial PC architecture.

M:002. The computational hardware within the ISD must be capable of running LV-CAP™,
the additional application containers detailed below and up to three others to be
written by community groups and / or third-party companies.

I:007. Applications to be developed by community groups or third parties will be subject
to ‘reasonable complexity’ restrictions, as determined solely by the LV-CAP™
team at EA Technology to ensure the hardware is capable of delivering all project
requirements.

 Page 13 of 41

Requirements Specification

I:008. The system within each enclosure must be capable of ensuring that all
applications defined in this document can operate simultaneously in order to
meet their individual requirements.

Communications

M:003. The ISD must have a modem / router installed capable of providing the below
functionality.

I:009. The ISD must be capable of communication, both incoming and outgoing, with a
control server based on Nortech’s iHost platform located at EA Technology’s
Capenhurst offices.

I:0010. The ISD must be capable of outgoing communications (i.e. initiated without
external request) for the transmission of data and information to the iHost
platform located at EA Technology’s Capenhurst offices.

I:0011. The ISD must be capable of outgoing communications (i.e. initiated without
external request) for the transmission of data and information to a separate cloud
based data storage server owned and operated by Lucy Electric.

I:0012. The ISD must be capable of communication, both incoming and outgoing, with
other ISD’s located in a local, (geographically similar) location to transfer data
between the two platforms in support of the network automation functionality.

I:0013. The ISD must be capable of receiving data pertaining to the monitoring of the LV
network from monitoring hardware installed in the same substation as the ISD.

I:0014. The ISD must be capable of receiving data pertaining to the temperature of the
associated transformer and ambient air temperature.

Storage Capacity

M:004. The internal, non-volatile storage of the ISD must be of sufficient capacity to store
all data captured by the sensors, generated by installed application containers
and received from other ISDs, for the duration of the OpenLV Project (minimum
period of 18 months).

Security (Physical)

M:005. The enclosure must be physically secured from unauthorised access. It cannot be
assumed that the trial equipment will be always installed at indoor, secured
substations.

Environmental

I:0015. The ISDs will be installed in a mixture of indoor and outdoor substations and the
enclosure must be suitable for use in either instance.

M:006. The enclosure therefore, must be suitably IP rated to adequately protect the
internal equipment in all potential substation environments and installation
methods.

 Page 14 of 41

Requirements Specification

Protection

M:007. In the situation where network meshing hardware (ALVIN Reclose™) is installed
and connected, it must be possible for a maintenance engineer to isolate the LV-
CAP™ platform from the Reclose™ devices enabling manual operation of the
network meshing capability.

M:008. This communication isolation must be capable of being ‘locked’ in a given state,
to ensure automated operation cannot resume unexpectedly.

M:009. The enclosure must be non-conductive to avoid potential earthing issues.

Watchdogs & reset capability

I:0016. It is essential that the requirement for manual (in person) resets in the event of
loss of communications or loss or responsiveness is avoided wherever possible
due to the range of locations in which the trial equipment is to be installed.

M:0010. It must be possible to remotely reset the platform without requiring physical
access to the ISD through establishing remote access to the router to trigger a
reset of the computational hardware.

I:0017. The ISD should have appropriate ‘Watchdogs’ to ensure the individual devices
within the overall ISD reset automatically if necessary.

W:001. There should be a Watchdog to ensure the router / model is reset if it enters a
non-responsive state.

S:001. There should be a Watchdog to ensure the computational hardware is reset if it
appears to have entered a non-responsive state, as indicated by a lack of network
communication within the ISD.

3.2.3 Mounting arrangements

M:0011. The enclosure must be capable of multiple mounting options, for example:

• direct wall mounting;

• magnetic mounting bracket on the side of switchgear equipment; or

• bolting in place on the floor.

I:0018. Individual arrangements on site will determine which approach shall be used.

3.2.4 Products required

M:0012. The ISD must include an enclosure for the necessary hardware (industrial PC,
modem and ancillary connection elements for monitoring devices.

I:0019. The ISD must include an industrial, ruggedised PC capable of running the LV-CAP™
platform and associated application containers.

I:0020. The ISD must include LV monitoring equipment for the gathering of information
about the associated LV network.

I:0021. The ISD must include a modem enabled for two-way data transmission, capable
of communicating over multiple mobile networks.

 Page 15 of 41

Requirements Specification

M:0013. The PC hardware must be installed with the LV-CAP™ platform.

3.2.5 Dependencies

I:0022. The system must be capable of installation within electrical safety standards
required by WPD for deployment of LV monitoring equipment on their network,
specifically:

• Standard Technique: SP2KD

3.2.6 Performance measurement

I:0023. The ISDs must enable the LV-CAP™ platform, including subsidiary application
containers and associated connected hardware, to meet all requirements as
defined in sections below.

I:0024. The ISDs must be capable of performing these functions for at least the duration
of the OpenLV Project trials.

M:0014. The overall system must include the necessary monitoring equipment to gather
necessary data for each software application.

M:0015. The overall system must be capable of communicating with physically separate
network monitoring hardware providing voltage and load data.

M:0016. The overall system must be capable of measuring incoming signals from the
temperature monitoring hardware.

M:0017. The overall system must be capable of communicating with ALVIN Reclose™
devices (x3) if they are installed in the substation.

I:0025. ALVIN Reclose™ devices will only be installed in 10 locations within the trials.

I:0026. Every ISD installed must be capable of communication with ALVIN Reclose™
devices as sites determined as suitable for their installation will not be identified
until later in the project.

M:0018. The overall system must be capable of communicating with other ISDs via non-
dedicated cable connection methods such as the use of a modem-to-modem
connection.

I:0027. This communication link will be used to share information relating to the
LoadSense application between adjacent, linked, substation LV-CAP™ platforms.

 Page 16 of 41

Requirements Specification

3.3 LV-CAP™ Software Platform

3.3.1 Overall statement

I:0028. The purpose of the OpenLV Project is to demonstrate the LV-CAP™ platform is a
capable of operating as a non-specific distributed intelligence platform for the LV
network.

I:0029. The LV-CAP™ software platform runs on the ISDs. This is an operating system that
enables multiple Applications to be installed in software containers on a single
device.

I:0030. The software also provides Apps with access to data provided from the sensors
which are installed in each LV substation.

All applications developed for and deployed to the LV-CAP™ platforms must conform to the
LV-CAP™ API document (

 Page 17 of 41

Requirements Specification

I:0031. Appendix A – LV-CAP™ API).

I:0032. The exceptions to 0, are below and will not be implemented as part of the OpenLV
Project:

W:002. Individual message signing (see section 8.1.2 for further information).

W:003. Signing of Docker Image files.

W:004. Only one instance of each Application will be run (see section 4.2) on LV-CAP.

As a result, Applications may continue to use legacy GUID identifiers.

W:005. To simplify TLS implementation, TLS keys and certificates will be built into Docker
Image files. The end date of TLS certificates should be set beyond the end of the
OpenLV project trials in September 2019. TLS implementation is mandatory.

W:006. The Priority feature of the data storage APIs will not be implemented, with all
queries returning messages of all priorities. Applications are free to output
Priority data, but it will not be parsed yet. Similarly, requests may be made with
Priority key values, but the key will be ignored.

3.3.2 Services required

I:0033. The ISD requires a number of ‘services’ to be provided by the LV-CAP™ platform.
For example, these include monitoring of the LV network, storing the associated
data and making predictions based on the data gathered.

I:0034. Each service required by the ISD is provided by an individual, specific software
application.

I:0035. Rather than providing directly measurable outputs, the LV-CAP™ platform
enables the operation of the various applications, and makes the data gathered
and generated available.

I:0036. The LV-CAP™ platform will be subjected to a cyber-security assessment, including
penetration testing, architecture evaluation and code review.

I:0037. The LV-CAP™ platform must demonstrate an appropriate level of security within
the system. This will be informed by the cyber-security review to be undertaken
by NCC Group.

M:0019. The LV-CAP™ platform must ensure communications between applications and
the message broker are encrypted and authenticated to prevent application
impersonation.

3.3.3 Products required

Hardware environment

I:0038. The OpenLV project hardware consists of an industrial PC based around a dual-
core Intel Core i3 processor with 8GB of RAM and a 512GB SSD.

I:0039. This PC provides the processing power and storage for the whole LV-CAP solution.

 Page 18 of 41

Requirements Specification

I:0040. It has two Ethernet ports for network communications, one of which is utilised to
connect a stand-alone 4G router which provides wide area network
communications.

Base operating system

I:0041. The ruggedised PC within the ISD will be running 64-bit Ubuntu Server 16.04 LTS
with current updates applied.

3.3.4 Dependencies

I:0042. The LV-CAP™ software platform, as deployed within the OpenLV project is
managed and controlled via an instance of Nortech’s iHost server.

I:0043. The LV-CAP™ platform deployed within the OpenLV Project requires PC hardware,
with an installed operating system, as defined above.

3.3.5 Performance measurement

M:0020. The LV-CAP™ software platform must be demonstrated to run all software
applications deployed to the platform if those applications conform to the API
documentation provided.

 Page 19 of 41

Requirements Specification

3.4 LV Monitoring Equipment

3.4.1 Overall statement

I:0044. LV network monitoring provides the core data to be utilised by all Apps that will
be deployed on the Intelligent Substation Devices.

I:0045. The ISDs must have connected monitoring equipment for the collection of data
pertaining to the LV Network.

I:0046. The equipment must provide the ISD with voltage and current measurements at
sufficient resolution and granularity to enable the effective operation of each
application on the platform to meet the requirements specified in this document.

3.4.2 Services required

M:0021. The complete ISD system must be capable of measuring the following from
appropriate sensor hardware for all phases.

Voltage Measurements

I:0047. RMS Voltage phase to neutral (x3) at the substation busbars.

Current Measurements

I:0048. For each circuit measured:

• RMS current in each phase

• Power factor for each phase

• Real and Reactive power flow each phase (including direction, so reverse

power is read as negative current)

Temperature Measurements

I:0049. Outdoor ambient air temperature must be measured.

I:0050. Indoor ambient air temperature (indoor substations) must be measured. In
multiple room substations, this will be in the transformer chamber.

I:0051. Transformer top oil temperature (or as close an approximation as can be
managed).

3.4.3 Products required

I:0052. Lucy Electric GridKey’s MCU520 system must be utilised as the monitoring
platform.

I:0053. 6x Flexible Rogowski Coils or Current Transformers, compatible with the GridKey
MCU520 system must be provided, to monitor the total transformer load and the
specific feeder connecting to an adjacent substation.

I:0054. Modified fuse carriers are the preferred method for connecting the GridKey
platform to LV network.

I:0055. 3x modified fuse carriers are required for substations where there is sufficient
capacity, (i.e. at least one empty fuse holder per phase), within the fuse board.

 Page 20 of 41

Requirements Specification

I:0056. G-Clamps are required for connection of the GridKey platform to the substation
neutral busbar.

I:0057. In the event that sufficient capacity on the fuse board is not available for all phase
connections, (I:0055), then G-Clamps should be used as with I:0056.

I:0058. An application container (GridKey Sensor Container) is required to provide the
interface capabilities between the MCU520 and the LV-CAP™ platform.

I:0059. The GridKey Sensor Container will communicate directly with the GridKey
MCU520 via a local Ethernet port.

W:007. The GridKey Sensor Container will not have access to the wide area
communications network.

I:0060. The requirements for this application, enabling communication between the LV-
CAP™ platform and Lucy Electric GridKey’s MCU520 platform are detailed in
Appendix C – Lucy Electric Application Container.

3.4.4 Dependencies

I:0061. For the application to function, an MCU520 must be procured from Lucy Electric
and connected to the ISD hardware via the ethernet port.

3.4.5 Performance measurement

M:0022. The LV-CAP™ platform must be provided with timestamped readings of voltage
and current readings from the GridKey Sensor Application.

S:002. It is desirable that synchronous sampling is implemented to aid in analysis of the
gathered data.

I:0062. These readings must be provided at a frequency of once per minute sufficient to
meet the requirements of other applications running on the platform.

M:0023. It must be demonstrated that data readings from the GridKey Sensor Application
can be acquired at a rate of once every minute for an indefinite period.

M:0024. It is essential that the system demonstrate the capability of continuous data
capture at a rate of once every ten (10) seconds for a period of at least one hour.

 Page 21 of 41

Requirements Specification

3.5 Temperature Sensing

3.5.1 Overall statement

I:0063. Temperature sensors are required to monitor the temperature of the LV
transformer and ambient air temperature. This data is provided to the relevant
container ‘Apps’ within the LV-CAP™ software platform and can be used for
Dynamic Thermal Rating (DTR) of LV transformers to release additional capacity
from existing LV network assets.

I:0064. It is necessary for the operation of the DTR application that the ambient
temperature and specific temperatures relating to the transformer are collected
and made available.

3.5.2 Services required

M:0025. The ISD must have the means to collect thermal readings as defined in I:0064,
receive and store this data in a format readable by other applications.

3.5.3 Products required

I:0065. This specification requires, at a minimum:

• physical means for detecting the ambient temperature and specific

transformer temperatures;

• software compatible with the LV-CAP™ platform for receiving and

managing the data from these sensors.

I:0066. Therefore, the ISDs must be equipped with the necessary thermocouples to
monitor the range of temperatures required by the DTR application.

I:0067. The ISDs must be equipped with the necessary interface equipment to connect
the temperature monitoring equipment to the LV-CAP™ hardware.

M:0026. The temperature sensing application container must take the values provided by
the thermocouple(s) and pass them to the LV-CAP™ system for storage in non-
volatile memory.

I:0068. The temperature readings must be recorded at a rate of once every minute for an
indefinite period.

3.5.4 Dependencies

I:0069. For the data to be provided, the application requires an appropriately sensitive
thermocouple to be connected to the ISD via a suitable data port.

3.5.5 Performance measurement

M:0027. The LV-CAP™ platform must be provided with timestamped temperature
readings from the Temperature sensing application at a rate of once per minute.

I:0070. These readings must be provided at one-minute intervals throughout the
duration of the OpenLV Project.

 Page 22 of 41

Requirements Specification

I:0071. It is noted that future business-as-usual deployments may require the ability to
vary the rate of data capture.

S:003. Therefore, it is desirable to demonstrate that the rate of data capture can be
varied between 10-second and 10-minute intervals, in 10-second stages.

 Page 23 of 41

Requirements Specification

3.6 LV Network Meshing

3.6.1 Overall statement

I:0072. This section details the hardware to be installed and the associated software to
enable meshing of individual feeders between two LV substations. This has the
potential to release additional capacity from existing LV network assets.

I:0073. The OpenLV Project must demonstrate that autonomous control of network
assets, based on pre-defined logic, is possible via a distributed intelligence
platform (the ISDs).

I:0074. Within the OpenLV Project, this is to be demonstrated through direct control of
ALVIN Reclose™ devices to mesh and de-mesh adjacent LV networks.

3.6.2 Services required

M:0028. The LV Network Meshing Application must enable communication capabilities
between the LV-CAP™ platform and ALVIN Reclose™.

M:0029. The application must read the desired information from the ALVIN Reclose™
devices, and pass it to the LV-CAP™ platform for storage in non-volatile memory
through the CSV data recorder.

• MIR_BUS_VOLTAGE_RMS

• MIR_CABLE_VOLTAGE_RMS

• MIR_LINK_CURRENT_RMS

• MIR_OPEN_OPERATIONS

• MIR_CLOSE_OPERATIONS

• MIR_WATCHDOG_FAULTS_DETECTED

• MIR_CHIP_TEMPERATURE

• MIR_REACTIVE_POWER

• MIR_ACTIVE_POWER

• MIR_UPTIME_HIGH

• MIR_SWITCH_TEMPERATURE

• MHR_SHADOW_FAULT_STATUS

M:0030. It must be demonstrated that data readings from the LV Network Meshing
Application can be acquired at a rate of once every minute for a period of at least
one hour.

I:0075. The variable MHR_SHADOW_FAULT_STATUS reads the current state of the circuit
breaker within the connected ALVIN Reclose™ devices.

I:0076. LV Network Meshing Application must be able to trigger an opening or closing of
the ALVIN Reclose™ device’s circuit breaker, meshing, or de-meshing the network
as applicable.

I:0077. For the purposes of the OpenLV Project trials, it is preferred that a record of the
process is stored for project evaluation.

 Page 24 of 41

Requirements Specification

M:0031. The application must therefore store a record of reacting to a command, whether
to initiate or break a network mesh, in non-volatile memory.

M:0032. The application must also store a record of the state of the connected ALVIN
Reclose™ devices both before and after implementing of the command, i.e. open
/ closed.

I:0078. If there are no attached circuit breakers, an appropriate ‘error code’ must be
provided instead.

M:0033. All control communications, whether acknowledged by a connected ALVIN
Reclose™ device or not, must be stored in memory on the LV-CAP™ platform for
later analysis if required.

M:0034. The ISD must be electrically isolated from ALVIN Reclose™ devices installed within
the substation.

3.6.3 Products required

I:0079. This specification requires, at a minimum, provision of an application capable of
communicating with ALVIN Reclose™ devices to deliver the above requirements

I:0080. The ALVIN Reclose™ devices will be procured by the OpenLV Project.

I:0081. The interconnection cable to interface the ISD with the ALVIN Reclose™ devices
will be provided by EA Technology’s LV Solutions team, in collaboration with
EA Technology’s HV59s team.

3.6.4 Dependencies

I:0082. The application requires a control input from another application (LoadSense) to
determine whether to open or close attached circuit breakers.

M:0035. The LV Network Meshing Application must only respond to instructions to mesh
or de-mesh the network through opening and closing of ALVIN Reclose™ circuit
breakers from the LoadSense application.

3.6.5 Performance measurement

M:0036. The ALVIN Reclose™ devices must respond to an instruction to initiate an open or
close operation.

M:0037. It must be demonstrated that the control signals for transmission to the ALVIN
Reclose™ devices from the LV Network Meshing application are triggered
whether an ALVIN Reclose™ devices is installed within the substation or not.

 Page 25 of 41

Requirements Specification

3.7 Load Profile Predictor Container ‘App’

3.7.1 Overall statement

I:0083. A load profile predictor application is required to utilise historical load on both
the transformer and specific LV feeder and predict the likely load profile for the
future.

3.7.2 Services required

I:0084. This application must utilise historical load values to generate a forecast of future
load on the transformer and individually monitored LV feeder.

I:0085. It must not utilise all the data available on the trial platform as future systems will
not have access to ‘unlimited’ historical data due to local storage limitations.

I:0086. The duration of historical data utilised by the application should be confirmed
with explanation of why that duration has been selected.

3.7.3 Products required

I:0087. This specification requires, at a minimum, an application that utilises the historical
load data to create a predictive forecast for the network and asset in question.

3.7.4 Dependencies

I:0088. In order to predict future load profiles, the Load Profile Predictor application
requires the historical data gathered by the GridKey MCU520 and stored in non-
volatile memory.

3.7.5 Performance measurement

I:0089. This application must utilise a sufficient period of historical data to provide
sufficient predictive assurance for the calculated outputs.

M:0038. The Load Profile Predictor application must output a load forecast at half-hourly
intervals for the next 24-hour period.

 Page 26 of 41

Requirements Specification

3.8 CSV Data Recorder Application

3.8.1 Overall statement

I:0090. Storage of all data captured by the system, information generated by any
applications and a record of any actions implemented are required to be stored
on non-volatile memory within the ISD.

3.8.2 Services required

M:0039. This application must store all data output by each application container on the
platform.

M:0040. All data must be timestamped such that raw data, and processed information
derived from that data can be reconstructed at a later date if required.

M:0041. All data must be attributable to the application that created and published it.

3.8.3 Products required

I:0091. This specification requires, at a minimum, an application that monitors all
communications traffic within the LV-CAP™ platform and stores it with a
timestamp, and provides a record of which application published that item of
data.

3.8.4 Dependencies

I:0092. This application requires other applications to be running on the LV-CAP™
platform to provide data and processed information for storage.

I:0093. The application must be granted sufficient authorisations within the platform to
enable access to all data and information for storage.

3.8.5 Performance measurement

M:0042. It must be demonstrated that accurate data values are stored in non-volatile
memory for each application on the LV-CAP™ platform that is providing measured
or calculated data.

M:0043. This data must be stored at a frequency that matches the outputs of the individual
applications.

 Page 27 of 41

Requirements Specification

3.9 LoadSense Container ‘App’

3.9.1 Overall statement

I:0094. Loadsense is an application designed to respond to outputs from Weathersense
relating to real time and predicted network loading.

I:0095. These outputs will trigger an immediate response to outputs from the Dynamic
Thermal Rating application.

I:0096. The LoadSense application implements network meshing through the ALVIN
Reclose™ devices and associated LV Network Meshing application.

3.9.2 Services required

I:0097. At present, the operational characteristics of the LoadSense application have not
been agreed with WPD; consequently, this section will be updated in the future
once the requirements have been determined.

3.9.3 Products required

M:0044. This specification requires, at a minimum:

• Provision of an application capable of utilising the outputs from the

applications listed below in combination with decision processes agreed

with WPD to determine if initiating a network meshing event is

appropriate; and

• If such an event is required, the application must instruct the ALVIN

Reclose™ interface application to commence network meshing

procedures.

M:0045. The application must also determine when it is appropriate to de-mesh the
networks, again based on decision processes agreed with WPD, and instruct the
ALVIN Reclose™ interface application accordingly.

3.9.4 Dependencies

I:0098. Input is required from the below applications:

• Load profile predictor

• WeatherSense

• Peer-to-Peer communications

3.9.5 Performance measurement

M:0046. The application must be demonstrated to arrive at the correct decision given
specific inputs and initiate the appropriate action of the ALVIN Reclose™ interface
application as a result.

I:0099. In the event that ALVIN Reclose™ devices are installed as part of the project trials,
it is possible to determine the condition of the device (i.e. circuit open or closed)
from the visual indicator on the front.

 Page 28 of 41

Requirements Specification

3.10 Dynamic Thermal Ratings Application

3.10.1 Overall statement

The Dynamic Thermal Ratings (DTR) Application utilises the current transformer
temperature, along with the forecast load profile from the Load Profile Predictor
Application, to determine the temperature of the transformer asset being
monitored over the next 24 hours.

3.10.2 Services required

M:0047. The DTR Application must determine up-to-date thermal ratings for the
associated transformer.

M:0048. Based on the forecast load profiles generated by the Load Profile Predictor
Application the DTR Application must determine the forecast temperature profile
for the transformer.

I:00100. In both instances, this information must be output to the main LV-CAP™ platform.

3.10.3 Products required

I:00101. This specification requires, at a minimum, provision of an application, compatible
with the LV-CAP™ platform, containing transformer DTR algorithms.

3.10.4 Dependencies

I:00102. The DTR application requires load data, temperature data and load profile
predictions from the LV-CAP™ platform in order to operate.

3.10.5 Performance measurement

M:0049. The DTR application must generate outputs once each subsequent predicted load
profile is available, based on that profile.

M:0050. Therefore, the DTR application must output a thermal rating forecast at hourly
intervals for the next 24-hour period.

 Page 29 of 41

Requirements Specification

3.11 Centralised Systems

3.11.1 Overall Statement

I:00103. Within the OpenLV Project there is a requirement for two ‘centralised’ systems
to enable management of the trial platforms and delivery of the project
requirements.

I:00104. The trial system utilises a Nortech iHost server to manage the deployed hardware
and store the gathered and processed data.

I:00105. A second server, to be provided by Lucy Electric will store the data gathered by
the platform, and processed data generated by applications deployed under
Methods 2 and 3.

I:00106. In both cases, separate communication applications are required although both
will utilise the 4G modem within the ISDs.

3.11.2 Security

I:00107. In all cases, both for the iHost based control server and the Lucy Electric cloud
based server, security must be paramount in keeping with the OpenLV Project’s
Data Protection Strategy.

M:0051. User authentication via unique login and password must be enabled.

S:004. Two-factor authentication should be utilised wherever possible.

M:0052. Mutual authentication must occur for all communication between platforms.

I:00108. An independent cyber-security evaluation of the LV-CAP™ platform and
associated control systems will be undertaken as part of the OpenLV Project.

I:00109. The system must implement any recommendations from this evaluation to
ensure the safety of WPD’s network assets.

3.11.3 Application deployment and management server (Nortech)

Services required

I:00110. The OpenLV Project’s deployed ISDs require a central management and control
system, this is provided by a Nortech iHost server.

M:0053. This system must be capable of deploying a new application container to a single
device, a subset of devices, or all devices.

M:0054. This system must be capable of removing an application container from a device,
a subset of devices, or all devices.

M:0055. This system must be capable of updating the application containers on a device,
a subset of devices, or all devices.

M:0056. This system must be capable of changing configuration settings for any individual
container on a specific device, a subset of devices, or all devices.

 Page 30 of 41

Requirements Specification

S:005. Identifying when a deployed platform, that has not been decommissioned, has
not connected to the server for more than one (1) day, three (3) days and five (5)
days, and trigger notification alerts in each instance.

M:0057. The Nortech Comms Application and the iHost server must mutually authenticate
each other so that only authorised data uploads occur, and Man-in-the-Middle
attacks are prevented. (This requirement is linked with I:00125.)

M:0058. Measures must be taken to ensure that the data uploaded remains confidential
in transit, to comply with the OpenLV Project Data Protection Strategy. (This
requirement is linked with I:00126.)

Products required

I:00111. Nortech’s iHost server is utilised as the central command and control system for
the LV-CAP™ platforms.

M:0059. The iHost server for the OpenLV Project must be installed behind a firewall to
restrict unauthorised access as far as reasonably practicable.

Dependencies

I:00112. The server is installed at EA Technology and requires access to communications
outside of the EA Technology corporate network to enable communications with
the deployed LV-CAP™ platforms.

I:00113. The server requires each deployed platform to have a functional router modem
and Nortech Communications application as defined in this document.

Performance measurement

M:0060. The iHost server must demonstrate the ability to receive all data uploaded from
each connected LV-CAP™ platform.

M:0061. The platform must demonstrate the ability to deploy a new application container
to a connected LV-CAP™ platform;

M:0062. The platform must demonstrate the ability to update an application container on
a connected LV-CAP™ platform;

M:0063. The platform must demonstrate the ability to change configuration files for a
software container on a connected LV-CAP™ platform;

M:0064. The platform must demonstrate the ability to remove an application container
from a connected LV-CAP™ platform;

3.11.4 Cloud Based Hosted Platform (Lucy)

Services required

I:00114. The OpenLV Project’s deployed ISDs require a public facing data management
system to enable community groups and third-party companies access to
network data, and outputs generated by their own applications.

 Page 31 of 41

Requirements Specification

M:0065. The Cloud Based Hosted Platform system must be capable of receiving data from
the Data Upload Application installed on each LV-CAP™ enabled device deployed
within the project.

M:0066. The Cloud Based Hosted Platform system must be capable of sharing this data
with appropriate individuals via an API interface.

M:0067. The Cloud Based Hosted Platform system must be capable of sharing this data
with appropriate individuals via a web-portal viewer interface.

M:0068. The (Lucy Electric) Data Upload Application and the associated Cloud Based Server
must mutually authenticate each other so that only authorised data uploads
occur, and Man-in-the-Middle attacks are prevented.

M:0069. Measures must be taken to ensure that the data uploaded remains confidential
in transit, to comply with the OpenLV Project Data Protection Strategy.

Products required

M:0070. Lucy Electric to provide a separate, instance of their cloud based data server for
use by the OpenLV Project.

Dependencies

I:00115. The server requires each deployed platform to have a functional router modem
and the Lucy Electric Communications application as defined later in this
document.

Performance measurement

I:00116. The platform must demonstrate the ability to receive a selected subset of data
from each connected LV-CAP™ platform;

I:00117. The platform must demonstrate the ability to allow authorised individuals to
access the information stored within the server, on a location (LV-CAP™ platform)
basis.

 Page 32 of 41

Requirements Specification

3.12 Communications

3.12.1 Overall Statement

I:00118. The LV-CAP™ platform, as being deployed as part of the OpenLV Project, requires
three separate communication applications, each to meet specific
communication requirements for project delivery.

I:00119. It is necessary for each platform to have the capability to communicate with:

• The application deployment and management server;

• Cloud based, public facing data storage server; and

• Adjacent LV-CAP™ platforms for data sharing purposes.

3.12.2 Security

I:00120. In all cases, both for the iHost based control server and the Lucy Electric cloud
based server, security must be paramount in keeping with the OpenLV Project’s
Data Protection Strategy.

I:00121. User authentication via unique login and password must be enabled.

I:00122. Mutual authentication must occur for all communication between platforms.

3.12.3 Management Comms Application

I:00123. The Nortech communications container is considered a core-element of the LV-
CAP™ platform as Nortech’s iHost server is utilised to manage and control all LV-
CAP™ platform’s (ISD’s) deployed within the OpenLV Project.

Services required

M:0071. The application container must facilitate two-way communication between the
LV-CAP™ platform and the iHost server.

I:00124. This must enable transfer of all desired data from the platform back to the iHost
server. This data may be all monitored and calculated values or a selected subset
thereof. In either case, the container must be capable of transferring the desired
data.

M:0072. The data from each LV-CAP™ system running the Nortech Comms Application
must be uploaded as a separate RTU (or multiple virtual RTUs) within the iHost
server.

M:0073. Once successfully uploaded to the iHost server, data must be marked as
‘uploaded’ within the LV-CAP™ platform to prevent retransmission.

M:0074. The application must receive and implement new application containers for
installation onto the LV-CAP™ platform.

M:0075. The application must receive and implement configuration files for the installed
applications.

M:0076. The application must receive and implement instructions to remove application
containers from the LV-CAP™ platform.

 Page 33 of 41

Requirements Specification

M:0077. The application must be capable of managing loss of communications during file
upload and download, resuming once communications are restored.

I:00125. The Nortech Comms Application and the iHost server must mutually authenticate
each other so that only authorised data uploads occur, and Man-in-the-Middle
attacks are prevented. (This is linked with S:005.)

I:00126. Measures must be taken to ensure that the data uploaded remains confidential
in transit, to comply with the OpenLV Project Data Protection Strategy. (This is
linked with M:0058.)

I:00127. The volume of mobile data transferred must be managed to reduce the operating
costs of the OpenLV system.

I:00128. The application must be configured via the standard LV-CAP™ configuration
mechanism (see sections 8.2.1 and 9.5 of the LV-CAP™ API). The configuration is
likely to be altered in the course of the OpenLV Trials, so the configuration
settings available must be documented alongside the Application.

I:00129. The configuration is expected to cover the following areas:

• iHost server settings (included where to send the data, and authentication

settings).

• Data Selection settings, i.e. which topics are to be uploaded to the iHost

server.

• (Optionally) Where data is to be placed in the iHost structure.

I:00130. The requirements document provided to Nortech for this application container is
located in Appendix B – Nortech Application Container.

I:00131. As part of the OpenLV Project, a Cyber-Security review of the LV-CAP™ platform
and Applications deployed within the project is to be undertaken. The Cyber-
Security supplier will be undertaking an audit of the LV-CAP™ platform and it
should be expected that this will include an audit of the software Application and
associated documentation created by Nortech as part of the project.

 Page 34 of 41

Requirements Specification

Products required

I:00132. This specification requires, at a minimum, a software container to manage the
communication link between the LV-CAP™ platforms and the central iHost server
in line with the required services above.

Dependencies

I:00133. The application will require access to:

• the connected router modem;

• the data stored on the platform.

Performance measurement

M:0078. The application must enable communications between an individual LV-CAP™
platform and the iHost command and control server.

I:00134. The application must demonstrate transfer of all data stored on the platform to
the server.

I:00135. The application must demonstrate receipt and installation of a new application
container.

I:00136. The application must demonstrate receipt and application of a revised
configuration set for an application container.

I:00137. The application must demonstrate removal of an application container.

I:00138. The application must demonstrate ability to resume a download when
communications are restored.

3.12.4 Data Upload Application

Services required

M:0079. This must enable transfer of all desired data from the platform back to Lucy
Electric’s cloud based data centre. This data may be all monitored and calculated
values or a selected subset thereof. In either case, the container must be capable
of transferring the desired data.

M:0080. The data from each LV-CAP system must be uploaded as a separate RTU (or
multiple virtual RTUs) within the server.

M:0081. Once successfully uploaded to the server, data must be marked as ‘uploaded’ to
prevent retransmission.

I:00139. The application must be capable of being configured via instructions received
from the iHost platform control server.

M:0082. The GridKey Upload Container and the GridKey Data Centre must mutually
authenticate each other so that only authorised data uploads occur, and Man-in-
the-Middle attacks are prevented.

M:0083. Measures must be taken to ensure that the data uploaded remains confidential
in transit, to comply with the OpenLV Project Data Protection Strategy.

 Page 35 of 41

Requirements Specification

I:00140. The requirements for the GridKey Data Upload container, to be provided by Lucy
Electric are defined in a separate document located in Appendix C – Lucy Electric
Application Container.

I:00141. As part of the OpenLV Project, a Cyber-Security review of the LV-CAP™ platform
and containers deployed within the project is to be undertaken. The Cyber-
Security supplier will be undertaking an audit of the LV-CAP™ platform and it
should be expected that this will include an audit of the software container and
associated documentation created by Lucy Electric as part of the project.

Products required

I:00142. This specification requires, at a minimum, a software container to manage the
communication link between the LV-CAP™ platforms and the GridKey Data Centre
in line with the required services above.

Dependencies

I:00143. The application will require access to:

• the connected router modem;

• the data stored on the platform.

Performance measurement

M:0084. The application must enable communications between an individual LV-CAP™
platform and the GridKey Data Centre.

M:0085. The application must demonstrate transfer of selected data stored on the
platform to the server.

M:0086. The application must demonstrate ability to resume a download when
communications are restored.

3.12.5 Peer to Peer Comms Application

Services required

I:00144. The LoadSense application in each ISD requires data relating to the status and
operation of the linked transformer in order to ensure safe and effective
operation.

I:00145. This data must include voltage and current, and the outputs from the load
predictor and WeatherSense applications.

M:0087. This application must enable the transfer of the necessary data between the
linked, adjacent devices.

M:0088. The data to be transferred between devices may change over the course of the
project and consequently, the data must be configurable.

 Page 36 of 41

Requirements Specification

Products required

I:00146. This specification requires, at a minimum, an application to enable the transfer of
information to allow the decision of whether to initiate network meshing. It must
also be able to respond to equivalent requests.

Dependencies

I:00147. The application will require access to:

• the connected router modem;

• the data stored on the platform.

Performance measurement

I:00148. The Peer-to-Peer Communications application must demonstrate the ability to
send and received the configured datasets with the assigned ‘partner’ LV-CAP™
platform.

 Page 37 of 41

Requirements Specification

3.13 Overall System

3.13.1 Overall Statement

I:00149. A magnetic mounting arrangement is preferred by the client DNO with wall or
floor mounting acceptable as an alternative.

M:0089. Therefore, the enclosure must be capable of multiple mounting arrangements,
including magnetic attachments, wall mounting bolts or ground placement.

3.13.2 Loss of Power

S:006. In the event of loss of power, the platform must, on completion of a successful
reboot, determine from data logs how long it was offline, and consequently how
much data has been lost.

This information must be stored within the system log files and must include:

• ISD serial number;

• Location;

• Time of last successful data record;

• Time of successful system restoration.

A notification should be issued to the OpenLV Project team, either via the iHost
server or direct notification such as an e-mail.

M:0090. The ISD must be capable of self-restoration following a loss of power during boot-
up-sequence.

S:007. The ISD is ideally required to withstand up to three loss-of power events within a
period of five (5) minutes without suffering unrecoverable errors.

S:008. The ISD should respond appropriately to a loss of power during download of
software or configuration updates, ensuring that the download is resumed /
restarted and completed once the system is running.

W:008. The ISD must respond appropriately to a loss of power during an update
procedure to the LV-CAP™ platform.

I:00150. The system should complete the process with the update / setting changes
applied.

3.13.3 Controlled Access

M:0091. The ISD enclosure must be capable of being securely locked with a padlock.

I:00151. WPD will provide padlocks to restrict access only to those staff competent and
authorised for LV Switching operations.

S:009. Access to the system software through direct ethernet connection must be
restricted through methods such as digital signing, communication encryption
and require a password to access the device.

 Page 38 of 41

Requirements Specification

3.13.4 Network deployment

M:0092. The cable connections (power, thermocouple and communications) must be
suitable for implementation on WPD’s network.

 Page 39 of 41

Requirements Specification

4 Appendix A – LV-CAP™ API

LV Common Application Platform

Public API

UNRESTRICTED

Product: LV-CAP

Drawing: 2383-MANUL-V04.03.00

Date: July 2017

CONFIDENTIAL - This document may not be disclosed to any person other than the addressee or any duly authorised

person within the addressee's company or organisation and may only be disclosed so far as is strictly necessary for the

proper purposes of the addressee which may be limited by contract. Any person to whom the document or any part of it is

disclosed must comply with this notice. A failure to comply with it may result in loss or damage to EA Technology Ltd or to

others with whom it may have contracted and the addressee will be held fully liable therefor.

Care has been taken in the preparation of this Report, but all advice, analysis, calculations, information, forecasts and

recommendations are supplied for the assistance of the relevant client and are not to be relied on as authoritative or as in

substitution for the exercise of judgement by that client or any other reader. EA Technology Ltd. nor any of its personnel

engaged in the preparation of this Report shall have any liability whatsoever for any direct or consequential loss arising

from use of this Report or its contents and give no warranty or representation (express or implied) as to the quality or

fitness for the purpose of any process, material, product or system referred to in the report.

All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means electronic,

mechanical, photocopied, recorded or otherwise, or stored in any retrieval system of any nature without the written

permission of the copyright holder.

© EA Technology Ltd July 2017

EA Technology Limited, Capenhurst Technology Park, Capenhurst, Chester, CH1 6ES;

Tel: 0151 339 4181 Fax: 0151 347 2404

http://www.eatechnology.com

Registered in England number 2566313

Version History

Date Version Author(s) Notes

2015/11/06

1 James Slater/Siôn

Hughes

First version of Third Party Developer

API document

2015/11/12 2 James Slater/Siôn

Hughes

Amendments made to first release of

document

2017/07/26 04.03.00 Richard Ash, James

Slater

Re-organise to reduce duplication,

incorporate changes to meet 2362-

RQSPC. Add MQTT security information

and error reporting API. Updates from

meeting with Nortech. Change

Application identifiers and

terminology, add concept of Priority for

messages (future proofing).

New release for OpenLV project.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Public API for LV Common Application Platform Page ii

Contents

1. Introduction ... 1

2. Glossary ... 1

3. Platform Overview ... 3

4. General Principals .. 6

4.1 Architecture .. 6

4.2 Application Identification .. 7

4.3 Message Serialisation .. 8

4.4 Topic Names .. 8

4.5 Units .. 9

4.6 Text Encoding .. 9

4.7 Data Persistence .. 9

4.8 Data Flow and Valid Flags ... 9

4.9 Data Priority ... 10

5. Start-up Procedures ... 11

5.1 LV-CAP System Start .. 11

5.2 Application Start .. 11

5.3 Required Subscriptions for all Applications... 12

6. Shutdown Procedure ... 12

7. Data Storage ... 14

8. Data Marketplace API .. 15

8.1 MQTT Broker .. 15

8.2 LV-CAP Core API ... 17

8.3 Sensor Data API .. 24

8.4 Algorithm Data API .. 26

8.5 Data Upload API ... 26

8.6 Data Storage API .. 34

9. JSON Object Structures .. 37

9.1 Scalar Object Format ... 37

9.2 Series Object Format ... 38

9.3 Co-ordinate Object Format.. 40

9.4 Data Series Metadata Object Format .. 40

9.5 Application Configuration Format .. 41

10. References ... 42

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Public API for LV Common Application Platform Page iii

Figures

Figure 1 - LV-CAP System Concept ... 4
Figure 2 - LV-CAP Software Architecture ... 4
Figure 3 - Data Flow through an example LV-CAP system ... 6
Figure 4 - Application start-up procedure ... 12
Figure 5 – Example query payload ... 33
Figure 6 – Example query payload for a specific Application Instance ... 33
Figure 7 – Example query payload for a specific topic and priority. ... 34
Figure 8 - Scalar Object Format Structure ... 37
Figure 9 - Scalar Object Format Structure ... 38
Figure 10 – Example of a Scalar Object used for a load prediction .. 39
Figure 11 – Example of a Scalar Object used for a harmonic spectrum ... 39
Figure 12 - Co-ordinate Object Format Structure ... 40
Figure 13 - Data Series Metadata Object Format Structure .. 41
Figure 14 - Scalar Object Format Structure ... 41
Figure 15 - Third Party Container Configuration File Example .. 41

Tables

Table 1 - Glossary of Terms ... 2
Table 2 - Required Subscriptions by Third Party Applications ... 12
Table 3 - Containers Table schema .. 14
Table 4 – Secured MQTT Broker Settings .. 15
Table 5 - Configuration MQTT topics .. 18
Table 6 - MQTT Status Topic .. 19
Table 7 - Status Field Values .. 20
Table 8 – Commands MQTT ... 21
Table 9 - Command Topic Command Values .. 21
Table 10 - Report Error Topic Table ... 22
Table 11 - Errno Description Table .. 23
Table 12 - Sensor Reading MQTT messages ... 24
Table 13 - Sensor Reading MQTT messages ... 25
Table 14 - Algorithm Data Table .. 26
Table 15 – Communications Upload Container MQTT ... 29
Table 16 – Request Object Keys ... 30
Table 17 – Response Object Keys .. 31
Table 18 – Response Status Values .. 32
Table 19 – Data Storage Container .. 36
Table 20 - Scalar Object Format Keys .. 37
Table 21 - Scalar Object Format Keys .. 38
Table 22 - Co-ordinate Object Format Keys .. 40
Table 23 - Data Series Metadata Object Format Keys ... 41
Table 24 - Third Party Configuration File Keys ... 42

https://eatl.sharepoint.com/development/Controlled/2383%20-%20LV-CAP%20Third%20Party%20API/2383-MANUL-V04.03.00%20-%20LV%20Common%20Application%20Platform%20Public%20API.docx#_Toc488827742

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 1 of 42

1. Introduction

The Common Application Platform for LV Networks (LV-CAP) is a software environment which

facilitates the implementation of the Smart Grid at the lower distribution voltages. To drive down

the cost of deploying Smart Interventions, the platform allows multiple algorithms to be deployed

to one set of measurement and data processing hardware. The platform allows these algorithms to

be designed and produced by independent third-party developers and packaged as stand-alone

Applications which can be easily deployed by the distribution network operator without requiring

bespoke software development.

This document details the Application Programming Interface (API) for developers intending to

write Applications to run on LV-CAP. LV-CAP uses Docker to overcome dependency problems for

third party developers, and helps to maintain and manage containers. It uses a MQTT messaging

system for the communication of running containers and has a data storage functionality to

persist data. This document has details on how a third-party Application can be set-up, run and

interact with the core services on the platform.

2. Glossary

Term Description

ACL Access Control List, a list of the resources which a specific

client may access. Used to control access to topics on the

MQTT broker.

API Application Programming Interface – a set of defined interfaces

to be used by application developers.

APID See Application ID.

Application A Docker Container suitable for use with LV-CAP in

accordance with this API document. All LV-CAP Applications

are Docker Containers, but not all Docker Containers are

suitable for use as LV-CAP Applications.

Application ID The unique identifier for a specific version of an Application,

by combining the Vendor, Application Name and Application

Version. See Section 4.2.

Application Name This is a string which identifies an Application. This is chosen

at will by the Application developer. See Section 4.2.

Application Version A string which indicates the version of Application in a

Docker Image. Decimal points may be used to separate

version numbers, e.g. 1.2.3. This is chosen by the Application

developer. See Section 4.2.

BLOB Binary Large OBject, a SQL database field which can store an

arbitrary array of binary data.

Container Manager The main process which controls all LV-CAP Applications.

Docker Open source program that allows Linux applications and their

dependencies to be packaged as a Docker Image.

Docker Container An isolated environment in which a Docker Image is run under

Docker. Multiple Docker Containers may be created from a

single Docker Image and run simultaneously.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 2 of 42

Term Description

Docker Image A file system image containing a packaged Linux program

(with its dependencies) which can be deployed to run on a

Docker system.

GUID/UUID A Version 4 GUID/UUID is a universally unique 48-byte

identifier which is generated using random numbers.

Example:-

821b8e33-4eaa-480e-b205-30fa9572af1a

IID See Instance ID

Instance One running copy of an Application, which is separate from

any other copy of the Application, and has its own independent

configuration. See Section 4.2.

Instance ID String identifying a specific Instance of an Application, which

is unique only on a given LV-CAP system. See Section 4.2.

LV Low Voltage. Used in this context to refer to the Low Voltage

electricity distribution network which delivers power to

domestic and commercial customers at 400/230V AC.

LWT Last Will and Testament, in MQTT a message to be sent when

to subscribers when a publisher disconnects unexpectedly.

MQTT (Message Queue Telemetry Transport) a publish subscribe

based lightweight messaging protocol, used on top of the

TCP/IP protocol.

MQTT Broker Process which is responsible for distributing messages to

interested clients based on the topic of a message. The LV

Common Application Platform runs a private instance of an

MQTT Broker

MQTT Topic Identifier within an MQTT message used by the broker to allow

filtering and direction of messages. All messages are

published to a topic, and clients receive them if they are

subscribed to the topic.

Vendor A string which identifies the developer of an Application. These

are allocated by EA Technology to each party creating

Applications to run on LV-CAP.

Table 1 - Glossary of Terms

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 3 of 42

3. Platform Overview

The LV Common Application Platform (LV-CAP) provides a framework for measurements to be

made, processed through algorithms, and actions taken based on the results (Figure 1). All of

these functions may be undertaken by Applications developed by EA Technology or third parties.

LV-CAP provides a number of core services for third party Container developers to utilise. These

are:

1. Container management (installation, configuration, starting and running of Applications,

including multiple copies and versions.).

2. A Data Marketplace which allows all Applications on the platform to communicate with

each other in a uniform manner.

3. A Data Storage mechanism which allows Application outputs to be stored for future use.

All other functionality is provided by Applications, but using standard interfaces so that different

implementations can be swapped in and out without affecting other Applications. To achieve this

Applications do not communicate directly but rather via the Data Marketplace using the messaging

API described in Section 8. This is shown in Figure 2.

A key piece of the provided framework is the Container Manager. The Container Manager has

ultimate control over the entire system ensuring everything runs as expected. Apart from the

Container Manager, all core services on the platform run as Docker containers which the Container

Manager is responsible for starting, stopping and updating. All Applications are packaged within

Docker containers which the Container Manager will again start, stop and manage. A Docker

container contains a GNU/Linux application and all its library dependencies except the Linux

kernel itself. This allows each Docker Image created to be portable, easily updated and

independent.

The Container Manager utilises the functionality within Docker to limit and share resources of a

running container. This control allows the Container Manager to manage platform resources,

giving Applications their requested resources and preventing them from consuming excess

resources and starving others of resource. Developers of third party Applications must be aware

that their application cannot use the entire resources of the system and that it must share

processor, RAM and storage with other Applications running on the system.

As well as managing the start-up and shutdown of Applications, the Container Manager is

responsible for ensuring that updated configuration files are delivered to the relevant containers,

and that updates to containers are applied. Finally, it checks that Applications are still running

correctly, handling any errors returned from Applications and dealing with Applications that have

ceased to operate correctly.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 4 of 42

Figure 1 - LV-CAP System Concept

Figure 2 - LV-CAP Software Architecture

All communications between Applications in LV-CAP take place through the Data Marketplace

(Figure 2). This uses Message Queue Telemetry Transport (MQTT) to transport messages. An

MQTT broker, Mosquitto, is supplied as part of LV-CAP and is used by both core services and third-

party containers. The message protocol for communicating on the MQTT broker and connection

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 5 of 42

settings to the broker are documented in Section 8 of this document. Access Control Lists (ACLs)

are used on the MQTT broker to secure it, preventing Applications from publishing on and

subscribing to topics they should not. The ACLs are automatically configured by LV-CAP when a

new Application is added to the system.

LV-CAP systems are configured with an internal IP network. The Data Marketplace operates on this

internal network and all Applications are automatically connected to it. Applications are only

connected to external networks when there is a clear requirement for such a connection, and the

system administrator has permitted it.

The Data Storage Application provides a database connected to the Data Marketplace. As well as

being used by the Container Manager, it stores the outputs of Applications so that they can be

subsequently retrieved for external communication or further processing.

Applications running on LV-CAP will generally fulfil one of four roles. Some Applications may fulfil

more than one role at the same time.

1. Sensor Applications are responsible for reading data from physical sensor hardware. The

data read is sanity checked and published to the Data Marketplace in a standard format.

The data is then available to any other Application to subscribe to. The set of sensors

provided for any given LV-CAP installation, and hence the Sensor Applications required, will

vary depending on the user’s requirements. The data format is independent of the

measurement hardware so that different supplier’s hardware can be used without software

alterations outside the related Sensor Application.

2. Algorithm Applications consume data from one or more sensors and perform calculations

upon it, for instance calculating the real-time temperature of a Transformer or forecasting

the localised demand for energy. The Applications read from the Data Marketplace and

publish their outputs back to the Data Marketplace.

3. Output Applications are the mirror image of Sensor Applications. They respond to

information on the Data Marketplace (created by Algorithm Applications) by controlling

physical hardware connected to the LV-CAP system, for instance carrying out network

switching or energy storage.

4. Communications Applications connect the LV-CAP platform to the outside world. LV-CAP

provides an IP communications link to the outside world, which Communications

Applications use to upload and download data. A Communications Application uploads

selected data values from the Data Marketplace to a central data server, or downloads

Application images and configuration files from a central management server.

The default Communications Application is provided by Nortech Management Ltd. to communicate

with their iHost server product.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 6 of 42

4. General Principals

This section includes some principals which have driven the design and operation of the LV-CAP

system. An understanding of these will make it easier to navigate and comprehend the rest of this

specification.

4.1 Architecture

LV-CAP is designed to work as a loosely-coupled data processing pipeline, in which measurement

data from Sensor Applications feeds into one or more Algorithm Applications. The outputs of

these Algorithm Applications may feed other Algorithm Applications. Ultimately data reaches

either a Communications Application to be sent to an external system, or an Output Application to

take local actions on the Smart Grid (Figure 3).

Figure 3 - Data Flow through an example LV-CAP system

Data is pushed through the pipeline from the Sensor Applications towards the outputs. The

pipeline runs in approximately real time, although this is not enforced as in a true real-time

system. If the workload of the LV-CAP system temporarily exceeds the available processing power

then the system will lag behind before catching back up when resources allow.

The pipeline forms a tree structure, with each node being an input or output on a single topic in

the Data Marketplace. Any Application may subscribe to any topic to make use of the data found

there, with the delivery of messages to the various destinations handled by the MQTT broker. The

expectation is that Applications will generally output onto fixed topic names (within their allocated

sub-tree), whilst being freely configured (via the Configuration API) to read from whichever input

topics the system operator requires.

The MQTT broker forming the Data Marketplace will only buffer a single message on each topic, so

Containers must handle their input messages sufficiently quickly to be ready when the next

message arrives on a topic. The Data Marketplace does not perform any rate adaption, so

Applications need to be prepared to receive their input messages at whatever intervals the

upstream Application produces them.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 7 of 42

4.2 Application Identification

Applications must have uniquely defined identifiers. These fulfil a number of roles:

• To ensure that Applications will never encounter a name “clash” with another Application.

• To allow multiple copies of the same Application to run simultaneously, with separate

configuration settings.

• To allow different versions of the same Application to be installed and run

simultaneously.

• To allow system operators to unambiguously specify what Applications are to be run on

any given system.

In this section, each word in bold is defined in the Glossary at the start of this document. To

facilitate the selection and operation of Applications, each Application's Docker Image has three

unique pieces for information associated with it:

1. A Vendor string. This is a string which identifies the developer of the Application. These

are allocated by EA Technology to each party creating Applications to run on LV-CAP.

2. An Application Name string. This is a string which identifies the Application. This is

chosen at will by the Application developer. It should not container version information.

3. An Application Version. This is a string which indicates the version of the Application.

Decimal points may be used to separate version numbers, e.g. 1.2.3. This is chosen by the

Application developer.

This information enabled a system operator to specify exactly what Application they wish to run

on LV-CAP. There are a number of constraints on the above fields which must be satisfied when

they are chosen:

• The Vendor and Application Name must be valid Docker Names (see Reference 4):

o Composed of valid ASCII characters.

o Restricted to lower case letters, digits, periods and hyphens (no underscores).

o May not start with a period or a dash.

• Each release or update of an Application must have a unique combination of Vendor,

Application Name and Application Version.

• For an Application to be successfully updated, the update must have an Application

Version which Docker considers to be different to the existing Application's Application

Version.

• For compatibility, the total length of the Vendor, Application Name and Application

Version must be less than 44 characters.

The Vendor, Application Name and Application Version are combined to form the Application

ID <APID>. When used as a file name or Topic Name then these sections are separated with an

underscore:

<Vendor>_<Application Name>_<Application Version>

When used as a tag for a Docker Image then they are combined according to the usual docker

convention:

<Vendor>/<Application Name>:<Application Version>

The <APID> identifies a specific Application executable in a globally unique manner. In the future

this will be enforced through the digital signing of Application Images and their <APID>.

When creating the Docker Image, these fields are specified to the -t option of the docker build

command as follows:

docker build -t <Vendor>/<Application Name>:<Application Version>.

When an Application is to be executed on LV-CAP, a Docker Container is created from the

Docker Image. Each Docker Container must have a unique name, and we must support creating

multiple Containers from one Image. To enable this a fourth field is used, which is the Instance.

Instance is a two digit number which is unique to this Instance of an Application on the LV-CAP

system. Instance values are set up in the Container Manager configuration by the system

operator. The Instance value of "00" is special and reserved for use by Applications which cannot

have more than one instance running. A single instance of any other Application may use any

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 8 of 42

other value between "01" and "99". There is no requirement for Instance numbers to be

contiguous, and their numeric value has no significance.

The Vendor, Application Name and Instance are combined to form the Instance ID (abbreviated

in this document as <IID>) in the form

<Vendor>_<Application Name>_<Instance>

The <IID> identifies a specific instance of an Application, which is unique only on a given LV-CAP

system, and may use any (specified) version of the Application. This is set up through the

Container Manager configuration file.

Each Application Instance Docker Container created on LV-CAP will have the container name in

Docker set to the <IID>.

The Application Version is deliberately omitted from the Instance ID so that the name does not

change when newer versions of the Application are deployed. The Instance ID <IID> of a

container is used as its handle, to identify the Container’s area of file system space, MQTT topic

namespace and so on.

4.2.1 Legacy Applications

Applications developed against older versions of this API (and the Innovate UK project) were

identified by a single GUID. This 48-byte opaque string served as both Application ID <APID>

(although it lacked version information) and Instance ID <IID> (although it lacked instance

numbers). Applications using this form can still run one instance, using their legacy identifiers.

For these legacy containers, two instances of the same Container with the same GUID will never be

run on the same LV-CAP installation. The GUID of a container was used as its handle, to identify

the Container’s area of file system space, MQTT topic namespace and so on.

4.3 Message Serialisation

All messages transmitted via the Data Marketplace are serialised in JavaScript Object Notation

(JSON). Adding additional white space to JSON payloads to ‘pretty print’ them is discouraged. All

messages sent via the MQTT Broker must be valid JSON.

Standardised JSON object structures are used wherever possible to maximise interoperability.

These are defined in Section 9 of this document.

4.4 Topic Names

All messages exchanged through the Data Marketplace are published on MQTT topics. Whilst this

API sets out specific topics for some purposes (e.g. interactions with the Container Manager) it is

up to Application authors to choose suitable topics (and especially sub-topics) for the messages

which their container produces. In order to use the standard JSON object structures defined in

Section 9, unchanging information about the value has to be encoded in the topic name, rather

than in the JSON payload itself. This also reduces the transmission of redundant (invariant)

information where communications bandwidth is limited.

The MQTT standard itself places few restrictions on the choice of topic names, apart those

specified in Section 4.7 of the standard. When choosing topic names however, the following

guidelines should be borne in mind to make development and administration easier:

• Avoid spaces in topic names, as they are prone to confuse parsers of all sorts.

• Avoid non-ASCII characters in topic names, as they are prone to confuse users or their

tools.

• Use topic levels to separate sections of your topic name. E.g.

"output/transformer/forecast/4h/capacity" not "output/transformer-forecast_4hCapacity".

• Design in extensibility – it will be disruptive to change existing topic names to allow

additional data to be published (e.g. more channels or intermediate calculation results).

To make it easier for system operators to understand what messages on a topic mean, the

following general form of topic names is recommended:

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 9 of 42

<subtree>/<asset>/<parameter group>/<time>/<parameter>

Not all components will be required for a given topic name and may be omitted. This results in

topic names like:

algorithm/data/0ca2eadb-b128-4dff-9bd7-cbb15e21b8b1/Number1Tx/state/hst

sensor/data/eatl_modbusrtusensor_01/Number1Tx/load/A

4.5 Units

All messages transmitted should have a timestamp (as shown in the preferred JSON formats in

section 9). These timestamps are 64-bit UNIX timestamps, defined as the number of seconds since

1
st

 Jan 1970 UTC. Where sub-second resolution is required, the fractional value should be stored as

a separate field.

Wherever possible, Applications should use the time stamp fields from incoming messages in

preference to referencing system time (explicitly or implicitly). This will make it much easier to test

Applications in a reproducible manner by simply replaying a fixed sequence of input messages,

regardless of the relationship between message time stamps and system time.

Values are always given in the base SI unit for the quantity being measured or calculated. For

example, current is always given in Amps, never in milliamps or kiloamps. Temperatures are given

in degrees Centigrade rather than Kelvin (in accordance with common engineering practice).

Metadata for the display of values may be passed between containers via Data Series Metadata

Objects described in Section 9.4.

4.6 Text Encoding

UTF-8 is the preferred method of encoding text.

When including non-English text in JSON strings bear in mind that that the double-quote character

must be escaped with a backslash, and other escape sequences are used for newline etc. control

characters, as per the JSON specification.

4.7 Data Persistence

Applications have two options for persisting data:

1. Data which is output to the Data Marketplace can be stored in the Data Storage Application

(Section 0). Any Application can then retrieve this data in the future (up to a time limit

imposed by the removal of old data values).

2. Each Application is assigned a filesystem volume. This file system is private to the

Application and not visible to any other container on the system. Data can be stored here

by the Application, e.g. to save system state or history.

The rest of the Docker Container environment is ephemeral and will be lost when the Application

is re-started, either by the Container Manager or because the whole LV-CAP platform is rebooted.

4.8 Data Flow and Valid Flags

LV-CAP is designed to work on the basis that data keeps flowing through the processing pipeline

at all times. To support this, the standardised JSON object structures in Section 9 all contain a

Valid key. When correct data is not available or cannot be calculated, Applications should continue

to output messages to the Data Marketplace in the normal manner, but with the Valid key set to

false. Applications subscribed to the topics will then be made aware that time is moving on, but

that there is a problem with the data source.

Containers which fulfil the Sensor Application role (Section 0) should continue to output messages

at the configured interval under all circumstances. This includes if the sensors are disconnected or

producing out-of-range values. When data is not available or out-of-range, the "Valid" member in

the output should be set to false. The actual sensor value sent in this case does not matter,

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 10 of 42

because subscribed containers should not use the value when "Valid" is false. The timestamp field

must be updated so that the subscribed containers can keep track of time.

Algorithm containers receiving input messages with Valid set to false should not use the Value in

the received message, but may rely upon the time stamps. When the input timestamps reach the

point that the algorithm is due to provide output, it must do so. It is up to the Application author

to decide if there is sufficient Valid data to produce an output or not. If there is insufficient Valid

data to produce a new result then the container should output, setting Valid to false and using the

timestamp from the most recent input message (whether that message is valid or not).

4.9 Data Priority

The standard JSON formats described in Section 9 provide for a Priority field. This allows the

upload of certain messages to be prioritised by Data Upload Applications, based on policy set by

the system operator and priority information from Application authors.

Valid Priority values are integers between 1 and 5. A Priority value of 1 is the highest priority and 5

is the lowest priority. Any other Priority value is not valid and is treated the same as if Priority is

not specified. These messages with no specified Priority have lower Priority than all messages with

a specified Priority.

The data APIs in sections 8.4 and 8.5 support query by Priority.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 11 of 42

5. Start-up Procedures

5.1 LV-CAP System Start

5.1.1 Start-up of Core Services

As discussed in section 0, the LV Common Application Framework consists of a number of core

services for third party containers to use. These have a defined start-up order and only once these

have all started up will any other container be started. The Core Services are started in the

following order:

1. Container Manager

2. Data Marketplace

3. Data Storage Application

5.1.2 Start-up of Remaining Applications

The remaining Applications installed on a given LV Common Application Platform will be started

automatically, once the platform’s framework has successfully started up and entered the running

state. All other Applications must be independent of each other (there is no concept of

inter-Application dependencies) so that Applications can start in any order. Applications will be

started by the Container Manager in order of their installation date (i.e. order of when they were

added to Docker’s available image list).

5.2 Application Start

Each Application on the LV Common Application Platform must perform certain actions when it is

started by the Container Manager. Failure to do so is likely to result in the Application being shut

down by the Container Manager.

Upon starting, a third-party Application must perform the following actions in the given order:

1. Connect to the Data Marketplace (see Section 8.1 for the MQTT Broker connection details).

2. Subscribe to topics listed in Table 2

3. Send a configuration request message to the Container Manager via the Data Marketplace.

4. Wait until a response is sent back by the Container Manager. This response will either

contain the Application’s configuration, or will include an error message if the Container

Manager is not aware of any configuration for the Application.

5. If configuration data is received, the Application should process the configuration and

apply it internally.

6. If the configuration is valid, the Application can start operating, sending a status update to

the Container Manager indicating all is OK.

7. If no configuration is available or there is an error in the configuration, the Application

must send a status update to the Container Manager indicating an error:

o Sending STATUS_INITIAL will result in the Container Manager re-sending the

configuration file, the Application should stay in a non-operating state awaiting

configuration.

o Sending STATUS_ERROR and will cause the Container Manager to restart the

Application. See Section 8.2.2 for more information on status messages.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 12 of 42

The above diagram shows the Application start procedure for a successful start.

Due to the Application start order (Section 5.1.2) it is possible that once a container starts its

‘normal operation’, other Applications it may want to communicate with may not yet be operating.

In this situation the Application will have to wait until any dependencies are running. This is not

normally a problem because the MQTT protocol allows publishing and subscription to occur in any

order, with no requirement for topics to be configured or created in advance.

5.3 Required Subscriptions for all Applications

All Applications must subscribe to the following MQTT message topics in order to interact

correctly with the Container Manager and remain running on the platform.

Topic Purpose

status/request Receives status requests from the Container Manager. Non-

response to two consecutive status requests will lead to the

Application being restarted without notice by the Container

Manager.

config/response/<IID> Receives Application configuration sent by the Container

Manager. The IID is the Application's own unique IID as in

section 4.2

command/<IID> Integer, the command to execute.

Table 2 - Required Subscriptions by Third Party Applications

6. Shutdown Procedure

Similar to the start-up procedure (Section 5), the LV Common Application Platform has a defined

shutdown procedure. This shutdown procedure is designed to allow Applications to shut down in a

safe manner and avoid any data loss or corruption. The shutdown procedure not only applies to

shutting down of the entire platform, but also occurs when an updated Application image is

applied. Applications can request their own shutdown if required, but all Applications shall

respond to a shutdown request from LV-CAP.

Figure 4 - Application start-up procedure

Third Party Application

pplicat

Container

Started

Start Normal

Operation

Container Manager MQTT Broker

Get

Configuration

Get

Configuration

Configuration Configuration

Status Status

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 13 of 42

When LV-CAP requests shutdown of an Application, the procedure is defined as:

1. Container Manager sends a shutdown command to the Application via the MQTT broker

(see section 8.2.3).

2. The Application handles the notification and performs its own internal shutdown

procedure, which may include writing any data to disk, stopping all MQTT subscriptions

including that of status requests, and any other work to perform a clean shutdown. Once

completed, the Application must respond to the Container Manager using a

status/response message with the STATUS_SHUT_DWN status.

3. The Container Manager will then shut down the container. If the Container Manager does

not receive a status message from the Application to be shutdown which includes the

STATUS_SHUT_DWN status for more than 1 minute, the container will automatically be shut

down.

If the Application fails to shut down within the “status/request” (default 2 minutes) interval then

Container Manager will shut it down forcibly by terminating the process.

In the event of an Application requesting its own shutdown by the Container Manager, the

procedure is defined as:

1. The Application performs its own internal shutdown procedure, which may include

writing any data to disk, stopping all MQTT subscriptions including that of status

requests, and any other work to perform a clean shutdown.

2. Once completed, the Application must send a status to the Container Manager using a

status/response message with the STATUS_SHUT_DWN status.

3. The Container Manager will then shut down the Application, and added to the stopped

Application list. It will not be run again until the Container Manager configuration is

altered or the Container Manager is re-started.

If an Application needs to be re-started by the Container Manager, the procedure is:

1. The Application prepares for being restarted, which may include writing any data to

disk, stopping all MQTT subscriptions including that of status requests, and any other

work to perform a clean restart.

2. Once completed, the Application must send a status to the Container Manager using a

status/response message with the STATUS_RESTART status.

3. The Container Manager will then shut down the Application and start it back up again

immediately.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 14 of 42

7. Data Storage

The Data Storage Application allows persistence of data from Applications. Data stored in the Data

Storage Application can also be configured by the system administrator to be uploaded by one or

more Communications Applications. In this role, the Data Storage Application acts as a buffer so

that data is uploaded to its destination reliably, even in the face of unreliable communications

links.

The data stored on the platform will be placed in a database which can be accessed via the Data

Marketplace (see section 8.3). The output of each Application Instance <IID> will be stored in its

own table. This table is created when the Application Instance is first created by the Container

Manager. All tables created for Applications will store records with the format documented in

Table 3.

Field Type Description

ID Opaque Integer Each record stored will be assigned an ID by the

Data Storage Application. This integer will be

unique amongst the records currently stored in the

Data Storage Application, but may be re-used over

the life of the LV-CAP system as old data is purged

from the database and new records added. There

are no guarantees about the numeric value of this

identifier.

Timestamp Integer The Unix timestamp at which the record was added

to the Data Storage Container.

SubTopic String Part of the MQTT topic string on the Data

Marketplace from which the record came will be

stored in this field.

Because tables are allocated by the Application

Instance ID, the topic string up to the IID would be

the same for all records. The common string is not

stored, leaving only the Application’s sub-topic

string. If no sub topics are present this field will be

null.

Data BLOB This is the MQTT JSON message sent to be stored.

It is stored as a BLOB so that no alterations are

made to the JSON object.

Table 3 - Containers Table schema

The payload an Application sends to be stored will retrieved unaltered from the Data Storage

Application. The Data Storage Application will set the values of the other fields automatically. The

API for retrieving records is documented in Section 8.5. Applications are strongly encouraged to

output their data in one of the standard JSON payload formats described in Section 9.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 15 of 42

8. Data Marketplace API

The main form of communication between Applications and the LV Common Application

Framework is via the Data Marketplace. This section documents the MQTT message topics, their

associated payload and includes examples of message payload. The API is broken up into sections

according to the Application roles (Section 0) expected to use them. Application may (and will) use

methods from more than one section of the API.

8.1 MQTT Broker

Each container wishing to operate on the LV Common Application Framework must connect and

communicate using the provided MQTT broker. The LV-CAP system uses a secured MQTT broker,

in order to support authentication of Application when they connect to the Data Marketplace. The

connections settings required are shown in Table 4.

Setting Value

Hostname marketplace

Port Number 8883

Encryption TLS v1.2 or higher

Authentication X509 client certificate

Username Set to the Application's Application ID

Client ID Set to the Application's Application ID

Table 4 – Secured MQTT Broker Settings

EA Technology will operate a TLS Certificate Authority for the LV-CAP system. All client SSL

certificates must be signed by this Certificate Authority, which will be trusted by the Data

Marketplace. This Certificate Authority certificate will be issued to Application developers for

inclusion in Application at build time, so they can authenticate the Data Marketplace.

Client certificates will be signed on request by the certificate authority, with the Common Name

(CN) of the certificate set to the Application ID <APID> of the Application they are to be used by

(see Section 4.2). This client certificate should be embedded in the Application so that it can be

used to connect to the Data Marketplace. The client certificate and associated private key need to

be embedded in the Application so that it can connect to the Marketplace. The private key should

be encrypted to minimise the risk of it being extracted from the Application by a third party. These

is no reason for EA Technology, or any other Application author, to know the Application's private

key.

When the Application connects to the Data Marketplace it's certificate will be checked. If valid, and

not revoked by the system operator, it will be allowed to connect. Access control lists will then

allow the Application to publish on the topics set out in this API. In general, subscriptions will not

be restricted.

A new certificate should be obtained whenever an updated version of the Application is produced.

This both mitigates the fixed expiry date of certificates, and allows the certificate of specific

Application versions to be revoked if the keys are compromised. This will also have to be done

when an updated Certificate Authority Root Certificate is required.

8.1.1 Payload Descriptions

JSON does not have a concept of fixed-size (bit width) integers, however implementation in

strongly typed languages is made much easier by defining the maximum size of integer fields

wherever possible. In this documentation:

• Any key which is shown with type “Integer” will always fit into a 32-bit signed integer.

• Any key which is shown with type “Int64” will always fit into a 64-bit signed integer.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 16 of 42

8.1.2 Security and Signing

The present implementation of LV-CAP provides only limited security between Applications, and so

requires a high degree of trust in Application authors. To improve this situation in the future, an

optional “signature” object has been added to all JSON payloads specified in this API. This member

is reserved for the definition (in a future version of this API) of a mechanism for cryptographically

signing each JSON payload.

The signing scheme is intended to use public (asymmetric) key cryptography. The source

Application will sign all outgoing messages with a private key, which must be kept secret.

Destination Applications receiving these messages can use the source Application’s public key

(which does have to be kept secret) to verify that the messages received are indeed from the

correct source container. It is intended that the public keys will be distributed to the relevant

Applications via their configuration data.

A Application which does not implement signature verification will be able to receive future signed

messages without modification, because it will ignore the signature object. Applications with

signature validation implemented will have to decide on their policy for messages received without

signatures.

At some future date, it may become mandatory to sign messages on some critical API topics when

communicating with the LV-CAP core components. It will be up to other Application authors at

what point they require signed input messages.

The signing of Docker Images will also be added in future to ensure that when system operators

specify a particular Application ID <APID> (see section 4.2) only that specific version can be run.

8.1.3 Last Will and Testament

The MQTT broker supplied by the framework supports the Last Will and Testament (LWT) feature.

This can be used to define, upon connection, a message which will automatically be sent by the

broker to subscribers of the set topic upon the non-clean disconnection of a client. In order to

manage the platform all Applications must provide a LWT on their status response topic (Section

8.2.2). The status response sent as the LWT must include the FAILED state within the payload.

Applications may also set LWT’s on any topic they desire to inform others of their failed state.

8.1.4 Quality of Service

MQTT provides a Quality of Service (QoS) level feature, which defines how hard a broker or client

will work to ensure a message is delivered. More details can be found in section 4.3 of the MQTT

Standard.

MQTT QoS is a property of both the publishing and subscribing of a message, so a client can

publish a message at any QoS and a client may subscribe to a topic at any QoS. The implemented

QoS will be the lowest of the publishing and subscribing QoS levels. There are 3 QoS levels defined

in MQTT:

• QoS 0 - At most once. The status request topic has a QoS of 0 as this regular heartbeat is

not critical, and must be sent regularly.

• QoS 1 - At least once. The Container Manager sends out commands at QoS 1 as Containers

can easily handle receiving the same command more than once.

• QoS 2 - Exactly once. This is used when querying the Data Storage Container, as multiple

message delivery could have complex and undesirable affects upon the database.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 17 of 42

8.2 LV-CAP Core API

The Core API is responsible for management of Applications. All Applications will need to use the Core API to register with and run on LV-CAP.

8.2.1 Configuration

The Configuration message topic is used to request and distribute configuration to Applications.

QoS: Messages on this these topics must be sent and received with QoS = 1. Applications must cope with multiple copies of their configuration

information being delivered.

Retention: Messages sent on these topics must have the retention flag set to false.

Topic Description Sender Receiver Payload Notes

config/request/

<IID>

Message containing a

request from a

container to the

Container Manager

requesting it’s

configuration

Any

Application

Container

Manager

{
 "Timestamp": <Int64>,
 "Signature": {}
}

No required payload.

Timestamp: (Optional) Standard

LV-CAP timestamp (see Section

4.5) when the configuration was

requested. Required in signed

payloads to protect against

replay attacks.

Signature: (Reserved) See

Section 8.1.2.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 18 of 42

Topic Description Sender Receiver Payload Notes

config/response/

<IID>

Message containing

updated configuration

for a specific

Application Instance.

Can be a response to a

request, or a new set of

configuration pushed to

a Application Instance.

Container

Manager

Application

Instance

with IID

specified in

topic name

{
"Configuration":
 {
 "<Key_1>": <Value_1>,
 "<Key_2>": <Value_2>,
 "<Key_n>": <Value_n>
 },
 "Timestamp": <Int64>,
 "Signature": {}
}

Configuration: JSON Object

read directly from the

Application Instance

configuration file. The structure

will be different for each

Application, as described in

Section 9.5.

Timestamp: (Optional) Standard

LV-CAP timestamp (see Section

4.5) when the configuration was

requested. Required in signed

payloads to protect against

replay attacks.

Signature: (Reserved) See

Section 8.1.2.

Table 5 - Configuration MQTT topics

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 19 of 42

8.2.2 Status

The Status topic is used by the Container Manager to request the status of running Applications. The Container Manager will periodically request

the status, and running Applications must respond to the request to confirm that they are operating correctly.

If an Application does not respond or responds with a status other than STATUS_MSG_OK or STATUS_INITIAL (see Table 7), it is considered to

have failed the request. After three successive failed status requests the Application will be restarted by the Container Manager. If the Container

still fails further status requests to reach a total of 5 consecutive requests, it will be permanently shut down, and this error logged in the

database.

QoS: Messages on this these topics must be sent and received with the QoS shown in Table 6.

Retention: Messages on this these topics must have the retention flag set to false.

Topic QoS Description Sender Receiver Payload Notes

status

/request

0 Message to

request status

from all running

containers.

Container

Manager

All

Applications

{
 "Timestamp": <Int64>,
 "Signature": {}
}

No required payload.

Timestamp: (Optional) Standard LV-

CAP timestamp (see Section 4.5)

when the status was requested.

Required in signed payloads to

protect against replay attacks.

Signature: (Reserved) See Section

8.1.2.

Status

/response/

<IID>

1 Message

containing a

status update

from the

Application

Instance identified

by <IID>.

Any

Application

Container

Manager

{
 "Status": <Integer>,
 "Message": "<message>"
 "Timestamp": <Int64>,
 "Signature": {}
}

Status: (Required) One of the values

from Table 7.

Message (Optional): If the Message

string is present it will be sent to the

error Database.

Timestamp: (Optional) Standard LV-

CAP timestamp (see Section 4.5)

when the status was requested.

Required in signed payloads to

protect against replay attacks.

Signature: (Reserved) See Section

8.1.2.

Table 6 - MQTT Status Topic

The valid status response values are shown in Table 7.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 20 of 42

Status Value Meaning

1 STATUS_MSG_OK – the Application is running normally.

2 STATUS_MSG_FAIL – the Application has failed. The Container Manager will restart the container. If the key “Message”

is present in the JSON object it will be stored in the Data Storage Application as an error message.

3 STATUS_MSG_ERR – the same as STATUS_MSG_FAIL for backwards compatibility.

4 STATUS_SHUT_DWN – the Application has completed its shutdown procedures and is ready to be stopped by the

Container Manager. The container will not be restarted unless the Container Manager configuration is altered or the

Container Manager is re-started.

5 STATUS_INITIAL – the Application is waiting to receive its configuration (and can do nothing until it does). The

Container Manager will resend the Application's configuration.

6 STATUS_RESTART – the Application wishes to be re-started. It has completed any shutdown procedures and saving of

state and is ready to be stopped and started again by the Container Manager.

Table 7 - Status Field Values

Status values other than STATUS_MSG_OK and STATUS_INITIAL are regarded as failure conditions. If the key “Message” is present in a JSON object

with a failure status, the Message string will be stored in the Data Storage Application as an error.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 21 of 42

8.2.3 Command

The MQTT command topic allows the Container Manager to send instructions to any running Application.

QoS: Messages on this these topics must be sent and received with QoS = 1

Retention: Messages sent on this topic must have the retention flag set to false.

Topic Description Sender Receiver Payload Notes

command/

<IID>

This is a

command

sent from the

Container

manager for

the container

to execute

Container

Manager

Any

Application

{
 "Command": <Integer>,
 "Timestamp": <Int64>,
 "Signature": {}
}

Command: (Required) One of the command

values shown in Table 9 below.

Timestamp: (Optional) Standard LV-CAP

timestamp (see Section 4.5) when the command

was issued. Required in signed payloads to

protect against replay attacks.

Signature: (Reserved) See Section 8.1.2.

Table 8 – Commands MQTT

The command values in Table 9 are currently specified. In the future, more values may be added, so all LV-CAP Applications must check the

payload of the message received is the expected value.

Command Value Command

1 Shut Down. Currently the only implemented command. All Applications must implement this command.

This command is used when an updated Application is deployed. The Container Manager will send a shutdown

command for the running Application to stop everything it is doing before re-starting the Application. See

Section 6 for more details.

Table 9 - Command Topic Command Values

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 22 of 42

8.2.4 Error

The MQTT error topic allows all containers to log any issue or internal error.

QoS: Messages on these topics must be sent and received with QoS = 1.

Retention: Messages sent on this topic must have the retention flag set to false.

Topic Description Sender Receiver Payload Notes

storage/data

/error/<IID>

Topic to log any

external or internal

errors to storage.

All

Applications

Data

Storage

Application

{
 "Errno": <Integer>,
 "Message": "String",
 "Timestamp": <Int64>,
 "Signature": {}
}

Errno: (Required) One of the errno

values shown in the

Timestamp: (Optional) Standard LV-

CAP timestamp (see Section 4.5) when

the command was issued. Required in

signed payloads to protect against

replay attacks.

Signature: (Reserved) See Section

Table 10 - Report Error Topic Table

Command

Value

Errno Name Description

1 ERRNO_JSON_INVALID Payload from MQTT failed to Parse. Invalid JSON.

2 ERRNO_IO Input/output Error

3 ERRNO_ACCESS Permission denied

4 ERRNO_NO_DEVICE No device found

5 ERRNO_FILE_DIRECTORY Directory not found

6 ERRNO_MQTT_SUBSCRIPTION Failed subscription to MQTT Topic

7 ERRNO_MQTT_PUBLISH Failed Publish, this is only used when trying to publish a payload to. If failed to publish an error

message use std::out. This will be saved by the Docker Log files and can be accessed later by Admin.

8 ERRNO_APPLICATION Process failed due to Application error. The message to accompany this Errno is mandatory.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 23 of 42

Command

Value

Errno Name Description

9 ERRNO_CONFIGURATION Failed processing the incoming Config. This is if the contents of the configuration expected does not

match or has the wrong types. (This could also be ERROR_JSON_INVALID if it’s not valid JSON)

10 ERRNO_MQTT_CABLLBACK Error occurred in the MQTT Call back. This can be when setting up the call back or an error within the

call back with an incoming message

11 ERRNO_SENSOR
This can have two applications. The first, for any Sensor Container that has an error with reading a

sensor it can output this Errno with the relevant message.

The second is for any Algorithm Container reading in the Sensor Payload and the Payload is valid but

any of the Key types is incorrect.

12 ERRNO_NETWORK Error accessing the network.

13 ERRNO_PORT Error opening or accessing a port.

14 ERRNO_PROFILE Any Algorithm Application expecting a Profile Payload, the Payload is valid but any of the Key types is

incorrect.

Table 11 - Errno Description Table

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 24 of 42

8.3 Sensor Data API

Applications which fulfil the Sensor Application role (see Section 0) will publish on the topics in the Sensor Data API. Applications in the Algorithm

Application role will often subscribe to these topics to obtain their inputs. This data will not normally be stored.

8.3.1 Sensor Readings

Topics for transferring sensor reading data collected and published by Sensor Applications.

QoS: Messages on this these topics must be sent and received with QoS = 1.

Retention: Messages on this these topics must have the retention flag set to false.

Topic Description Sender Receiver Payload Notes

sensor/data/

<IID>/<sensorna

me>

New sensor readings Sensor

Applications

Any

Application

Standard Scalar Object

Format, Series Object Format

or Co-ordinate Object Format.

See Section 9 for details of

standard JSON formats.

Table 12 - Sensor Reading MQTT messages

See Section 4.4 for guidelines on choosing intelligible topic names for message output. Sensor Applications are responsible for publishing data

and setting the Valid flag in messages (Section 9) in accordance with the guidelines set out in Section 4.8.

Readings will often be published at fixed time intervals. These intervals will start when the sensor Application receives its configuration, and so

may not be aligned to "clock face" times. For instance, if the configuration was received at 09:05:00, setting a time interval of 20 seconds. The

Sensor Application will output at 09:05:20 then at 09:05:45 and so on.

Depending on the properties of the sensor Application, there is a possibility that if many sensors have the same interval time and one sensor

takes longer to read that this would delay the next sensor and so on. The start of the normal operation for the Sensor Application is most

susceptible to this, however after a short time this will reach an equilibrium and each output will be at the prescribed interval. Applications

consuming the messages must be equipped to cope with these timing variations.

8.3.2 Sensor Metadata

Topics for transferring sensor metadata published by Sensor Applications. Publishing on these Metadata topics is optional.

QoS: Messages on this these topics must be sent and received with QoS = 1.

Retention: Messages on this these topics must have the retention flag set to true.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 25 of 42

Topic Description Sender Receiver Payload Notes

sensor/data/

<IID>/

<sensorname>/

metadata

Sensor reading

metadata

Sensor

Application

Any

Application

Standard Data Series

Metadata. Object Format.

See Section 9 for details of

standard JSON formats.

Table 13 - Sensor Reading MQTT messages

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 26 of 42

8.4 Algorithm Data API

Applications which fulfil the Algorithm Application role (see Section 0) will publish on the topics described in the Algorithm Data API. Application

in the Algorithm Application role may subscribe to these topics to obtain inputs. Applications in the Output Application role will normally

subscribe to one or more of these topics to obtain inputs.

Data published on these topics may be stored in the Data Storage Application, depending on the latter's configuration and the "ToStore" flag set

by the publishing Application. Only stored data will be available for upload by Communications Applications.

QoS: Messages on this these topics must be sent and received with QoS = 1.

Retention: Messages on this these topics must have the retention flag set to false.

Topic Description Sender Receiver Payload Notes

algorithm/data/

<IID>/

<subtopic>

The main topic an

algorithm Application

will publish its data on

Algorithm

Application

Any

Application

Any valid JSON object.

Applications are strongly

encouraged to use one of the

standard JSON Object Formats

to improve interoperability.

{
 <Valid JSON Payload>
}

Algorithm Applications may

output on any sub-topic starting

with “algorithm/data/<IID>”

(where <IID> is the Application

Instance's assigned identifier).

Table 14 - Algorithm Data Table

When choosing the sub-topic on which to output data, authors are encouraged to use a descriptive topic name (Section 4.4). This makes

configuring systems easier and less error prone. For example, transformer capacity forecasts for the available capacity in transformer T1 over the

next 4 hours might be output on topic

algorithm/data/<IID>/T1/forecast/4h/capacity

If the JSON payload is to be stored in the Data Storage Application it must have a KEY “ToStore” and the value set to true. If this is not present or

is set to false then the data will not be stored. Only stored data will be available for upload by Communications Applications.

Payloads should have a KEY “Timestamp” containing the Unix timestamp the calculation refers to. Where the calculation covers a range of time,

this should be the time stamp of the most recent time covered by the calculation.

Algorithm Applications may use optional metadata subtopics in exactly the same way as Sensor Applications, as documented in Section 8.3.2.

8.5 Data Upload API

The Data Upload API provides a means to access the data queued for upload in the Data Storage Application. Applications which fulfil the

Communications Application Upload role (see Section 0) will use this API extensively. Applications using this API must be explicitly authorised by

the system operator in the Data Storage Application configuration. A separate (virtual) queue is maintained for each Upload Application of data

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 27 of 42

which is waiting for upload. Once a message has been uploaded the Upload Application must notify this fact back to the Data Storage Application

via this API so that the queues can be updated.

This API operates on a pattern of separate topics for requests and response messages. When using this API, Applications should always subscribe

to the response topic before publishing a request. This avoids a race between the response and the subscription which may cause the container

to miss response messages.

All methods in this API work with the per-Application database tables described in Section 0. The SubTopic and Data columns are set from the

received message. The other columns in the table will be set automatically by the Data Storage Application.

QoS: Messages on this these topics must be sent and received with the QoS shown in Table 15.

Retention: Messages on this these topics must have the retention flag set to false.

Topic QoS Description Sender Receiver Payload Notes

storage/request

/newdata/<IID>

2 A request for new

data to be

uploaded by

Upload

Application <IID>.

The request will

search all tables

in the database

which the

Application is

permitted to

upload from.

Upload

Application

with

identifier

<IID>

Data

Storage

Application

{
 "MaxLength": <Integer>,
 "StartTime": <Int64>,
 "EndTime": <Int64>,
 "PreferOldest": <Boolean>,
 “InstanceID”: <IID>
 "SubTopic": <String>,
 "MinPriority": <Int>,
 "MaxPriority": <Int>,
 "Timestamp": <Int64>,
 "Signature": {}
}

The request Payload keys

are documented in Table

16.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 28 of 42

Topic QoS Description Sender Receiver Payload Notes

storage/response

/newdata/<IID>

2 The response to

the above

request.

Data

Storage

Application

Upload

Application

with

identifier

<IID>

{
"Status": <Integer>,
"Response": [
 {
 "TableName": <IID>,
 "TableRows": [
 {
 "ID":<Integer>,
 "Timestamp": <Int64>,
 "SubTopic": <string>,
 "Data": <JSON Object>,
 },
 {rowN}
]
 },
 {
 "TableName": <IID>,
 “TableRows”: [
 {
 "ID":<Integer>,
 "Timestamp": <Int64>,
 "SubTopic": <string>,
 "Data": <JSON Object>,
 },
 {rowN}
]
 }
]
"Timestamp": <Int64>,
"Signature": {}
}

The response Payload

keys are documented in

Table 17.

If an error occurs then the

Payload will still have

Status and Response

members, but the

Response array will be

empty.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 29 of 42

Topic QoS Description Sender Receiver Payload Notes

storage/uploaded

/<IID>

1 Indicates that

messages have

been uploaded by

<IID> and they

should be

removed from the

upload queue.

Upload

Application

with

identifier

<IID>

Data

Storage

Application

{
"NewData": [
 {"<IID>": [<Integer>,
<Integer>]},
 {"<IID>": [<Integer>,
<Integer>]},
],
"Timestamp": <Int64>,
"Signature": {}
}

NewData: (Required)

Array of objects, one for

each table to be updated.

<IID>: (Required) Array of

opaque integer identifiers

of the messages which

have been uploaded.

Timestamp: (Optional)

Standard LV-CAP

timestamp (see Section

4.5) when the update was

sent. Required in signed

payloads to protect

against replay attacks.

Signature: (Reserved) See

Section 8.1.2.

Table 15 – Communications Upload Container MQTT

Key Status Description

MaxLength Optional The maximum number of records to be returned from the database. This is subject to an

upper limit set in the Data Storage Container configuration (see 8.5.1 below). If no value

is given then the default value is 100 records.

StartTime Optional A UNIX timestamp. Only records added to the Data Storage Application after this time will

be returned. If not supplied then records from the start of the database will be returned,

unless the operator has imposed a tighter restriction.

EndTime Optional A Unix timestamp. Only records added to the Data Storage Application before this time

will be returned. If not supplied then records up to the present time are returned.

PreferOldest Optional Flag indicating that if there are more than MaxLength records available, the oldest data

should be returned rather than the default of returning the newest data.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 30 of 42

Key Status Description

InstanceID Optional String identifying the Application Instance which data should be returned for. Only

records which exactly match the given topic will be returned (no wildcards). This

constrains the query to only return results from the specified table in the database.

If this member is an empty string or omitted from the JSON then data from all

Application Instances is returned.

SubTopic Optional String giving the sub-topic data is required for. This is the sub-topic below

data/algorithm/<IID>. Only records which exactly match the given topic will be returned

(no wildcards).

To retrieve data from all sub-topics, do not include this key in the JSON payload. To

request data only from the top-level topic (no sub-topics) then this key must be included

in the JSON payload with an empty string value.

MaxPriority Optional Integer defining what priority messages are to be returned. If this JSON key is supplied,

messages with priority equal to or numerically less than the value only will be returned.

The special value of 6 can be used to return only messages which had no Priority value

when stored. If neither this JSON key nor MaxPriority is specified then messages of all

priorities will be returned.

MinPriority Optional Integer defining what priority messages are to be returned. If this JSON key is supplied,

messages with priority equal to or numerically greater than the value only will be

returned. If neither this JSON key nor MaxPriority is specified then messages of all

priorities will be returned. If both keys are supplied then only messages which meet both

criteria will be returned.

Timestamp Optional A UNIX timestamp when the request was sent. Required in signed payloads to protect

against replay attacks.

Signature Reserved See Section 8.1.2

Table 16 – Request Object Keys

Key Status Description

Status Always Present Integer indicating whether the query succeeded or not. See Table 18.

Response If Status =

DSC_QUERY_OK

An array of objects containing data from different tables to be uploaded. Always an

array even if data is only from one table.

Response/TableName Always Present Name of the table the data in this object is from.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 31 of 42

Key Status Description

Response/TableRows Always Present An array of selected rows from the table (array even if only one row is selected). Each

object in the array is an individual message from the source table.

Response/TableRows/ID Always Present Opaque integer identifier for the message. These have no meaning except as a

handle to be passed back to the Data Storage Application when the message has

been uploaded. ID values are only unique within a single table, and may be recycled

after the database has been cleaned.

Response/TableRows/Timestamp UNIX timestamp when the message was added to the Data Storage Application (see

Section 0).

Response/TableRows/SubTopic The subtopic (below algorithm/<IID>) on which this message was published.

Response/TableRows/Data The original message JSON object stored in the Data Storage Application.

Timestamp Optional A UNIX timestamp when the response was sent. Required in signed responses to

protect against replay attacks.

Signature Reserved See Section 8.1.2

Table 17 – Response Object Keys

Status Value Code Description

0 Never sent, an unanticipated error.

1 DSC_QUERY_OK Query succeeded, the length of the complete results set is less than or equal to

MaxLength. The result is returned in the TableRows array. See also

DSC_QUERY_MORE.

2 DSC_QUERY_EMPTY The query was valid, but found no records. The TableRows array will be empty.

3 DSC_QUERY_TABLE_DENIED The query is against a table (Application Instance) which the sending container is

not allowed to access.

4 DSC_QUERY_TOO_LONG The query requested more data than the Data Storage Application is willing to

provide, because the MaxLength field value was too large (see 8.5.1 below).

5 DSC_QUERY_TOO_BIG The data requested by the query is too big to fit into the MQTT payload length

restriction.

6 DSC_QUERY_TOO_OLD The data requested in the query is from further in the past than the Data Storage

Application is willing to provide.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 32 of 42

Status Value Code Description

7 DSC_UNAVAILABLE The Data Storage Application is unable to respond to this request, either because it

is too busy or is in the process of shutting down.

8 DSC_QUERY_MORE Query succeeded, there are more than MaxLength results. The first MaxLength

results are returned in the TableRows array, but another query is needed to get

more values.

9 DSC_QUERY_INVALID The JSON query object is empty or not valid JSON and cannot be parsed.

Table 18 – Response Status Values

The Data Upload API is not designed to be re-entrant. After a request has been made, the container should wait for the response (there may need

to be an exceptional time-out in case the Data Storage Application suffers an error). If a second request is made whilst the response is being

produced, the response is undefined. The request does not modify the database at all, so if a second identical request is made after the first

response is received, the same data will be returned.

The response status value is used to show whether there is more data available than was sent or not. There is no concept of a database cursor or

response pagination. As a result, API users who need to upload all the available data must:

1. Request data for upload.

2. Upload the received messages (if any).

3. Update the database to mark the messages as uploaded.

4. Continue querying until a response of DSC_QUERY_EMPTY is received, at which point there is no more data to upload.

Although the JSON format for the "storage/response/newdata/<IID>" topic allows for messages from multiple tables to be sent in one message,

this is not guaranteed. The Data Storage Container may opt to return data from only one table or topic in the response (where there is data to

retrieve), and return data from other tables/topics when subsequent requests are received.

8.5.1 Limits

The Data Storage Application is a shared resource and excessively large queries have the potential to degrade the performance of LV-CAP for all

users. To mitigate this risk, limits are imposed on the queries which will be accepted.

• Maximum number of records requested in one query. If MaxLength is not set then a limit of 100 records will be applied. A query for

100 records will always be permitted. This limit may be increased (up to a maximum of 15 000) by the LV-CAP operator, but Application

should not depend upon larger queries being allowed on any given system. Note that the limit is on the requested size, not the actual

number of records found (which is not known when the query is set up). Thus a request for 16 000 records will always fail

(DSC_QUERY_TOO_LONG from Table 18), even if the table is empty.

• Maximum query size. Because the query result is sent as an MQTT message via the Data Marketplace, it is limited to a maximum of

256MB (268,435,455 bytes), as documented in section 2.2.3 of the MQTT 3.1.1 specification. If the query results in a message which is

longer than this limit, then an error (DSC_QUERY_TOO_BIG from Table 18.) is returned instead. Applications must request fewer messages

to reduce the returned message size below the limit.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 33 of 42

• Maximum data age. The Data Storage Application will not be able to store data going back in time indefinitely. Old records will be purged

by the Data Storage Application to control the database size. To manage database performance the LV-CAP operator may also impose a

maximum age on queries. Any request for data older than this age will fail with DSC_QUERY_TOO_OLD from Table 18.

8.5.2 Examples

An example query payload requesting the oldest available data for upload, from all Applications, is shown in Figure 5. The query is not signed. Up

to 100 records will be returned as there is no maximum length given. This query may fail:

• With status DSC_QUERY_TOO_OLD if the Data Upload Application does not allow queries indefinitely into the past.

• With status DSC_UNAVAILABLE if the Data Upload Application is shutting down or overloaded.

• With status DSC_QUERY_TOO_BIG if the results will not fit in a MQTT packet.

If it succeeds it could give status:

• DSC_QUERY_EMPTY if there is no data to be sent.

• DSC_QUERY_OK if there are between 1 and 100 messages to be sent.

• DSC_QUERY_MORE is there are more than 100 messages to be sent.

{
 "PreferOldest": True
}

Figure 5 – Example query payload

An example query payload requesting the latest available data from a specific Application Instance is shown in Figure 6. The query is not signed.

Up to 50 records will be returned as requested. This query may fail:

• With status DSC_QUERY_TABLE_DENIED if the Data Storag Application does not allow this Data Upload Application to upload data from

this Application Instance.

• With status DSC_UNAVAILABLE if the Data Storage Application is shutting down or overloaded.

• With status DSC_QUERY_TOO_BIG if the results will not fit in a MQTT packet.

If it succeeds it could give status:

• DSC_QUERY_EMPTY if there are no messages from this Application Instance.

• DSC_QUERY_OK if there are between 1 and 50 messages to be sent.

• DSC_QUERY_MORE is there are more than 50 messages to be sent.

{
 "MaxLength": 50,
 “InstanceID”: "eatl_profiler_04"
}

Figure 6 – Example query payload for a specific Application Instance

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 34 of 42

An example query payload requesting the latest, highest priority, data from a specific topic is shown in Figure 7. The query is not signed. Up to

10 records will be returned as requested. This query may fail:

• With status DSC_QUERY_TABLE_DENIED if the Data Storage Application does not allow this Data Upload Application to upload data from

this Application Instance.

• With status DSC_UNAVAILABLE if the Data Storage Application is shutting down or overloaded.

• With status DSC_QUERY_TOO_BIG if the results will not fit in a MQTT packet.

If it succeeds it could give status:

• DSC_QUERY_EMPTY if there are no messages on this topic with priority equal to 1.

• DSC_QUERY_OK if there are between 1 and 10 messages on this topic with priority 1.

• DSC_QUERY_MORE is there are more than 10 messages on this topic with priority 1

{
 "MaxLength": 10,
 "InstanceID": "eatl_profiler_04",
 "SubTopic": "alarm/highhigh",
 "MaxPriority": 1
}

Figure 7 – Example query payload for a specific topic and priority.

8.6 Data Storage API

The Data Storage API provides a means to access the data persistently stored by the Data Storage Application. This API provides a mechanism for

Applications to access data previously stored by Applications, e.g. where a system history is required.

This API operates on a pattern of separate topics for requests and response messages. When using this API, Applications should always subscribe

to the response topic before publishing a request. This avoids a race between the response and the subscription which may cause the container

to miss response messages.

All methods in this API work with the per-Application Instance database tables described in Section 0. The SubTopic and Data columns are set

from the received message. The other columns in the table will be set automatically by the Data Storage Application.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 35 of 42

Topic QoS Description Sender Receiver Payload Notes

storage/data/

<IID>/

2 Insert data into the

Data Storage

Application, in the

<IID> table.

Any

Application

Data

Storage

Application

{
 "Key": Data,
 "KeyN": DataN
}

Data messages on this topic can

hold anything the sender

wishes. The message payload

will be stored unaltered as a

BLOB.

If messages are sent on a sub-

topic below storage/data/

<IID>/ then the sub-topic will be

stored in the SubTopic column

of the table.

This is equivalent to publishing

data on algorithm/data/<IID>

with the ToStore flag true.

storage/request/

<IID>

1 Request data by the

Application Instance

<IID>.

Any

Application

Data

Storage

Application

{
 "MaxLength": <Integer>,
 "StartTime": <Int64>,
 "EndTime": <Int64>,
 "PreferOldest":
<Boolean>,
 "InstanceID": <IID>
 "SubTopic": <String>,
 "MinPriority": <Int>,
 "MaxPriority": <Int>,
, "Timestamp": <Int64>,
 "Signature": {}
}

The Data Storage Application

will return the requested data

on the storage response topic

below.

The request Payload keys are

documented in Table 16.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 36 of 42

Topic QoS Description Sender Receiver Payload Notes

storage/response/

<IID>

1 The response from

the data storage

container after a get

request by

Application Instance

<IID>.

Data

Storage

Application

The <IID>

Application

which

requested

the table

{
"Status": <Integer>,
"Response": [
 {
 "TableName": <IID>,
 "TableRows": [
 {
 "ID":<Integer>,
 "Timestamp": <Int64>,
 "SubTopic": <string>,
 "Data": <JSON
Object>,
 },
 {more rows}
]
 }
]
}

The response Payload keys are

documented in Table 17.

Table 19 – Data Storage Container

Because of the automatic storing of Algorithm output described in Section 8.4, it will be unusual to need to explicitly store data using the

"storage/data/" topic. Publishing on the "storage/data/<IID>" topic has exactly the same results as publishing on the "algorithm/data/<IID>" topic

with the ToStore flag true.

The fields of the message on the request topic are documented in Table 16, and those of the response message on the response topic in Table

17. These objects are deliberately the same as those used by the Data Upload API. The same rules for InstanceID and SubTopic apply. Similarly,

"storage/response/newdata/<IID>" and "storage/response/<IID>" use the same response format, although in this API there will only ever be data

from one table and so only one element in the Response array. Note that the Instance ID <IID> in the topic names refers to the Application

making the requests and receiving the data, not the table being accessed (except in the first topic documented, where they are the same).

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 37 of 42

9. JSON Object Structures

All messages passed through the Data Marketplace, and all Application Configuration data, is

serialised as JSON objects. Whilst for some purposes bespoke JSON object structures are

necessary, wherever possible use should be made of the standard JSON object structures defined

in this section.

Using standard object structures ensures that data can be passed from any Application to any

other Application without the need for bespoke software development. It minimises the need for

Applications to cope with data from different sources in different formats. Applications which

output in standard formats will be best placed to take advantage of facilities provided by LV-CAP

and other Applications.

In applying these Object formats consideration should also be given to the general principals set

out in Section 0.

9.1 Scalar Object Format

The default choice of JSON Object for almost all sensor readings and many algorithm outputs will

be the Scalar Object. It represents a single value at a single point in time, for instance a

temperature or a power flow. To provide more metadata about the value and how it was arrived at,

a separate Data Series Metadata Object should be used (see Section 9.4).

{
 "Timestamp": <Int64>,
 "Value": < >,
 "Valid": <Boolean>,
 "ToStore": <Boolean>,
 "Priority": <Int>,
 "Signature": {}
}

Figure 8 - Scalar Object Format Structure

Key Status Description

Timestamp Required Standard LV-CAP timestamp (see Section 4.5) when the

reading was made.

Value Required The reading, converted to base engineering units. The

reading can be of any scalar type (Boolean, Integer or

Floating Point).

Valid Required A logical value, showing if the Value is within the expected

range (configured).

ToStore Optional Flag used historically to indicate whether the data should

be stored by the Data Storage Application or not. May be

over-ridden by the Data Storage Application configuration.

Priority Optional A priority indicator as in section 4.9, which allows the

upload of certain messages to be prioritised by Data

Upload Applications.

Signature Reserved See Section 8.1.2

Table 20 - Scalar Object Format Keys

The Value is always given in the base SI unit for the quantity being measured or calculated, as in

Section 4.5. The units can be given explicitly in the optional Data Series Metadata Object (Section

9.4).

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 38 of 42

9.2 Series Object Format

Where a series of closely related values are to be sent as a set then a Series Object provides a way

to package the complete set of values in a single JSON Object. It can represent a time series of

values (anything from a fault waveform recorder (sampling many times per mains cycle) to a load

profile (hourly load values), or a frequency spectrum. The object contains fields to record what

range of source data was used to produce series. To provide more metadata about the value and

how it was arrived at, a separate Data Series Metadata Object should be used (see Section 9.4).

{
 "Timestamp": <Int64>,
 "StartPoint": <Int64 or float>,
 "Interval" : <float>,
 "Value": [< >],
 "Confidence": [< >],
 "Valid": <Boolean>,
 "TimestampStart": <Int64>,
 "TimestampEnd": <Int64>,
 "ToStore": <Boolean>,
 "Priority": <Int>,
 "Signature": {}
}

Figure 9 - Scalar Object Format Structure

Key Status Description

Timestamp Required Standard LV-CAP timestamp (see Section 4.5) when the

series was produced.

Interval Required Interval between values in the series. For time series, this is

the time between samples in seconds (or decimals of

them), for frequency spectrums Hertz and so on.

StartPoint Required The x-axis co-ordinate of the first value in the series. For

time series this is the timestamp of the first value, for

frequency spectrums the frequency of the first bin and so

on.

Value Required An array of series values in base engineering units. The

values can be of any scalar type (Boolean, Integer or

Floating Point).

Confidence Optional An array, the same size as the Value array, of values giving

the confidence in the values. This may be used to represent

the uncertainties caused by missing input data or

inadequate system history.

Valid Required A logical value, showing if the Series as a whole is thought

to be valid for further use.

TimestampStart Optional The standard LV-CAP timestamp of the earliest source data

used to produce this series.

TimestampEnd Optional The standard LV-CAP timestamp of the latest source data

used to produce this series.

ToStore Optional Flag used historically to indicate whether the data should

be stored by the Data Storage Container or not. May be

over-ridden by the Data Storage Container configuration.

Priority Optional A priority indicator as in section 4.9, which allows the

upload of certain messages to be prioritised by Data

Upload Applications.

Signature Reserved See Section 8.1.2

Table 21 - Scalar Object Format Keys

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 39 of 42

This is deliberately an abstract data format designed to be capable of accommodating a wide

range of different data types. The Value are always given in the base SI unit for the quantity being

measured or calculated, as in Section 4.5. The units can be given explicitly in the optional Data

Series Metadata Object (Section 9.4). Some practical examples of its use are given in Figure 10 and

Figure 11.

Figure 10 shows the Series Object Format used for a predicted load profile.

• It was calculated and published at 14:30:05 UTC on 8
th

 March 2017.

• The first predicted load segment in the prediction starts at 14:30:00 UTC on 8
th

 March

2017

• The prediction is composed of half-hourly (1800 seconds) load current values.

• The prediction is for 4 hours, so has 8 values of load current in amps.

• The predictor is confident in the prediction for the first two hours and the last one, but is

aware of limitations in the data for the third hour (e.g. because there are problems with

missing data in that hour). These reduce the confidence in those predictions.

• Overall the predictor thinks that this data is valid for use.

• The prediction is built on the previous 4 weeks of data, so the oldest data used was from

14:30:00 UTC on 8
th

 March 2017.

• The most recent data used was from 15:00:00 UTC on 1
st

 March 2017, the end of the half

hour period one week ago.

• The prediction is not signed.

• The predictor does not stipulate whether this data is to be stored or not.

{
 "Timestamp": 1488983405,
 "StartPoint": 1488983405,
 "Interval" : 1800.0,
 "Value": [120.0, 122.5, 125.7, 130.9, 124.8, 121.4, 118.6, 115.3],
 "Confidence": [1.0, 1.0, 1.0, 1.0, 0.85, 0.75, 1.0, 1.0],
 "Valid": true,
 "TimestampStart": 1486564200,
 "TimestampEnd": 1488380400
}

Figure 10 – Example of a Scalar Object used for a load prediction

Figure 11 shows the Series Object Format used for a harmonic spectrum.

• It was calculated and published at 11:00:00 UTC on 5
th

 March 2017.

• The first harmonic in the spectrum is 50Hz

• The spectrum is composed of values for each harmonic, so every 50 Hz.

• The spectrum is for the first 5 harmonics only.

• The spectrum is calculated, so no confidence values are given.

• Overall the calculation succeeded, so the data is valid for use.

• The spectrum was calculated from the previous 10 minutes of data, so the oldest data used

was from 10:50:00 UTC on 5
th

 March 2017.

• The most recent data used was from 10:59:59 UTC on 5
th

 March 2017, the end of the 10-

minute period.

• The publishing container thinks that this data should be stored in the Data Storage

Container.

• The publishing container has assigned this data the lowest available priority.

• The spectrum is not signed.

{
 "Timestamp": 1488711600,
 "StartPoint": 50,
 "Interval" : 50,
 "Value": [76423.0, 122.5, 86.7, 57.9, 12.4],
 "Valid": true,
 "TimestampStart": 1488711000,
 "TimestampEnd": 1488711599,
 "ToStore": true,
 "Priority": 5
}

Figure 11 – Example of a Scalar Object used for a harmonic spectrum

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 40 of 42

9.3 Co-ordinate Object Format

Where a group of co-ordinates are produced then a Co-ordinate Object provides a way to package

them in a single JSON Object. The co-ordinates may be in a real space (e.g. Latitude and Longitude

for geographic position) or a conceptual one (real and imaginary power in a power flow vector

diagram). To provide more metadata about the value and how it was arrived at, a separate Data

Series Metadata Object should be used (see Section 9.4).

{
 "Timestamp": <Int64>,
 "Coordinates": [< >],
 "System": <String>,
 "Valid": <Boolean>,
 "ToStore": <Boolean>,
 "Priority": <Int>,
 "Signature": {}
}

Figure 12 - Co-ordinate Object Format Structure

Key Status Description

Timestamp Required Standard LV-CAP timestamp (see Section 4.5) when the

reading was made.

Coordinates Required Array of co-ordinate values, in base engineering units. The

co-ordinate values will be Integer or Floating-Point values.

System Optional The co-ordinate system being used, e.g. Cartesian (for x-y

plots) or WGS84 latitude and longitude.

Valid Required A logical value, showing if the Value is within the expected

range (configured).

ToStore Optional Flag used historically to indicate whether the data should

be stored by the Data Storage Container or not. May be

over-ridden by the Data Storage Container configuration.

Priority Optional A priority indicator as in section 4.9, which allows the

upload of certain messages to be prioritised by Data

Upload Applications.

Signature Reserved See Section 8.1.2

Table 22 - Co-ordinate Object Format Keys

No implementation of this Object Format yet exists.

9.4 Data Series Metadata Object Format

There will be various pieces of metadata (that is, information about the data) associated with the

data published on a given topic. It may be desirable to transmit these in a machine-readable

format, so that consuming Applications can make use of them. However, this metadata does not

change from reading to reading, so it would be inefficient to transmit (and especially store) them

alongside the readings themselves. Instead a separate /meta/ sub-topic is used for metadata,

which is transmitted as Data Series Metadata Objects.

The metadata objects are sent only when an Application starts, or there is a change to the

metadata. In order that subscribing Applications always receive this information, the messages are

published with the Retained flag set to true. This means that the Data Marketplace will

automatically send a copy of the latest metadata to any new client which subscribes the /meta/

sub-topic, without any effort from the publishing Application.

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 41 of 42

{
 "Name": <String>,
 "Units": <String>,
 "DisplayUnits": <String>,
 "SigFigs": <Integer>,
}

Figure 13 - Data Series Metadata Object Format Structure

Key Status Description

Name Required String to be used as the name for this data, e.g. labels on

graphs

Units Optional String giving the units of the data sent on the topic. As the

data will be in base engineering units (Section 4.5), this just

gives the correct SI unit, for instance amps or metres per

second.

DisplayUnits Optional String giving the units for display of the data. This may

include the use of SI prefixes for convenient display, e.g.

kVAr for reactive power flow.

SigFigs Optional Integer indicating how many significant figures the values

should be displayed to, to avoid the spurious display of

excess decimal places caused by binary floating-point

representation.

Table 23 - Data Series Metadata Object Format Keys

An example of the Data Series Metadata for a topic carrying a voltage measurement is shown in

Figure 14.

{
 "Name": "Line1 to Neutral",
 "Units": "Vrms",
 "DisplayUnits": "Vrms",
 "SigFigs": 3
}

Figure 14 - Scalar Object Format Structure

9.5 Application Configuration Format

All configuration files must be valid JSON objects. Application configuration data will differ

significantly from Application to Application depending on their structure, and only be of use to

the Application it is intended for. To accommodate this, the structure of the configuration file for

each container is largely up to the Application author, but a standard top-level structure is

required in order to deliver updated configuration information to the correct container. Application

authors are free to structure the ContainerConfig object within their configuration in whatever way

suits their application, provided that it is a valid JSON object.

{
 "ContainerName": "<IID>",
 "ContainerConfig":
 {
 "<examplekey1>": <configvalue1>,
 "<examplekey2>": <configvalue2>,
 "<examplekeyN>": <configvalueN>
 }
}

Figure 15 - Third Party Container Configuration File Example

2383-MANUL-V04.03.00 - LV Common Application Platform Public API.docx

Third Party Developer API for LV Common Application Platform Page 42 of 42

Key Status Description

ContainerName Required IID of the Application the configuration is for.

ContainerConfig Required JSON object containing the Application Instance

configuration. This object's contents and structure will

change from Application to Application.

Table 24 - Third Party Configuration File Keys

10. References

The following external resources provide more information to support this specification:

1. The MQTT Standard, version 3.1.1: http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-

v3.1.1-os.html

2. ECMA Standard 404, "The JSON Data Interchange Format" http://www.ecma-

international.org/publications/files/ECMA-ST/ECMA-404.pdf

3. Blog Post "MQTT Topics & Best Practices" http://www.hivemq.com/blog/mqtt-essentials-

part-5-mqtt-topics-best-practices

4. Docker Documentation for docker tag command:

https://docs.docker.com/v1.12/engine/reference/commandline/tag/ and

https://docs.docker.com/v17.03/engine/reference/commandline/tag/

http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.ecma-international.org/publications/files/ECMA-ST/ECMA-404.pdf
http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices
http://www.hivemq.com/blog/mqtt-essentials-part-5-mqtt-topics-best-practices

www.eatechnology.com

Australia | China | Singapore | UAE | Europe | USA

Main reception: +44(0) 151 339 4181

EA Technology, Capenhurst Technology Park,

Capenhurst, Chester, CH1 6ES, United Kingdom

Global Footprint

We provide products, services and support for customers in 90 countries, through our offices in

Australia, China, Europe, Singapore, UAE and USA, together with more than 40 distribution

partners.

Our Expertise

We provide world-leading asset management solutions for power plant and networks.

Our customers include electricity generation, transmission and distribution companies, together

with major power plant operators in the private and public sectors.

 Our products, services, management systems and knowledge enable customers to:

 Prevent outages

 Assess the condition of assets

 Understand why assets fail

 Optimise network operations

 Make smarter investment decisions

 Build smarter grids

 Achieve the latest standards

 Develop their power skills

 Page 40 of 41

Requirements Specification

5 Appendix B – Nortech Application Container

EA Technology Requirement Specification Appendix B - 2626-RQSPC-SHT04-V00.01.01
Nortech Comms Container

Requirements.docx

- 1 of 3 -

Requirement Specification

Drawing Number 2626-RQSPC-SHT04-V00.01.01 Nortech Comms

Container Requirements.docx

Project Title OpenLV: Nortech Comms Application Requirements

Electronics Systems Project No. E717

Charge Code EX267

Supplier Nortech

Request Date 2017/07/01

1 Background
EA Technology undertook an InnovateUK Energy Catalyst project with University of Manchester and Nortech

Management Ltd to develop a Common Application Framework for LV Network Management. The core software

platform developed by EA Technology under the project is called LV-CAP and consists of a number of Docker containers

communicating with each other using MQTT.

WPD has now been awarded a Network Innovation Competition (NIC) project to trial the LV-CAP platform on real

networks. This project is known as OpenLV. The OpenLV project will use a Nortech iHost server to store data from the

OpenLV hardware, and as the management platform for the LV-CAP software running on the OpenLV hardware. To send

data to and from the iHost server, a communications Application written by Nortech will be used. This Application was

created as part of the Innovate UK LV-CAP project, but some enhancements are necessary to meet the requirements of

the OpenLV project. This specification details the enhancements to the Nortech Comms Application required to meet

the needs of the OpenLV Trial Programme.

2 Requirements

2.1 Hardware Environment
The OpenLV project hardware consists of an industrial PC based around a dual-core Intel Core i3 processor with 8GB of

RAM and a 512GB SSD. This PC provides the processing power and storage for the whole LV-CAP solution. It has two

Ethernet ports for network communications:

1. Local Ethernet link to the GridKey MCU520, fitted with an additional Ethernet module.

2. Ethernet link to a stand-alone 4G router which provides wide area network communications.

The Nortech Comms Application will communicate with the iHost sever via the wide area network.

2.1.1 Networking
See EATL drawing 2626-IMSPC-SHT03-V00.01.00 for the expected network architecture.

The volume of mobile data transferred must be managed to reduce the operating costs of the OpenLV system.

EA Technology Requirement Specification Appendix B - 2626-RQSPC-SHT04-V00.01.01
Nortech Comms Container

Requirements.docx

- 2 of 3 -

2.2 Base Operating System
The OpenLV project PC will be running 64-bit Ubuntu Server 16.04 LTS with current updates applied.

2.3 LV-CAP Environment
The Nortech Comms Application is a "core" Application on the LV-CAP Platform which fulfils the Management Comms

and Data Upload roles. This is described in the Public API document 2383-MANUL-V04.02.07 and the Internal API

document 2362-MANUL-V04.01.05, hereafter referred to as "the LV-CAP API".

2.3.1 API Implementation Status
The following features of the LV-CAP API are not expected to be implemented in time for the OpenLV project:

1. Individual message signing (section 8.1.2) will not be implemented.

2. Signing of Docker Image files will not be implemented.

3. Only one instance of each Application will be run (section 4.2) on LV-CAP.

4. As a result, Applications may continue to use legacy GUID identifiers.

5. To simplify TLS implementation, TLS keys and certificates will be built into Docker Image files. The end date of

TLS certificates should be set beyond the end of the OpenLV project trials in September 2019. TLS

implementation is mandatory.

6. The Priority feature of the data storage APIs will not be implemented, with all queries returning messages of all

priorities. Applications are free to output Priority data, but it will not be parsed yet. Similarly requests may be

made with Priority key values, but the key will be ignored.

2.3.2 Application Identification
The Vendor string for Nortech is "nortech". The Application Name for this Application is "commscontainer". Each release

of the Nortech Comms Application should be tagged as described in section 4.2 of the LV-CAP API. For example the

Docker tags would be:

nortech/commscontainer:0.1.0

nortech/commscontainer:0.1.2

nortech/commscontainer:0.1.3

nortech/commscontainer:1.0.0

nortech/commscontainer:1.0.3

nortech/commscontainer:1.2.0

These tags are important as they are used by Docker to load and run the Application on the LV-CAP. Incorrect tags may

result in the incorrect version of the image being deployed and run. The tag of each released image must be

documented along with the released Docker Image file.

2.4 Download and Management
No major changes are required to the Application download or configuration download parts of the Application.

The maximum size of a Docker Image which can be deployed via the iHost management system will be increased to

300MB.

EA Technology Requirement Specification Appendix B - 2626-RQSPC-SHT04-V00.01.01
Nortech Comms Container

Requirements.docx

- 3 of 3 -

2.5 Data Upload

2.5.1 Data Input
The Nortech Comms Application will obtain the data to be uploaded from the Data Storage Application via the Data

Upload API (see section 8.5 of the LV-CAP API). Once data has been successfully uploaded to the iHost server it must be

marked as uploaded in the database so that it is not re-transmitted in future.

2.5.1.1 Data Format

No Change

2.5.2 Data Destination
The data from each LV-CAP system running the Nortech Comms Application must be uploaded as a separate RTU (or

multiple virtual RTUs) within the iHost server.

2.6 Configuration
The Nortech Comms Application must be configured via the standard LV-CAP configuration mechanism (see sections

8.2.1 and 9.5 of the LV-CAP API). The configuration is likely to be altered in the course of the OpenLV Trials, so the

configuration settings available must be documented alongside the Application.

The configuration is expected to cover the following areas:

• iHost server settings (included where to send the data, and authentication settings).

• Data Selection settings, i.e. which topics are to be uploaded to the iHost server.

• (Optionally) Where data is to be placed in the iHost structure.

2.7 Security

2.7.1 Authentication
The Nortech Comms Application and the iHost server must mutually authenticate each other so that only authorised

data uploads occur, and Man-in-the-Middle attacks are prevented.

2.7.2 Confidentiality
Measures must be taken to ensure that the data uploaded remains confidential in transit, to comply with the OpenLV

Project Data Protection Strategy.

2.7.3 Audit
As part of the OpenLV Project, a Cyber-Security review of the LV-CAP™ platform and Applications deployed within the

project is to be undertaken. The Cyber-Security supplier will be undertaking an audit of the LV-CAP™ platform and it

should be expected that this will include an audit of the software Application and associated documentation created by

Nortech as part of the project.

3 Timescales
Delivery Date 2017/07/22

Prepared by Richard Ash

Date 2017/07/01

 Page 41 of 41

Requirements Specification

6 Appendix C – Lucy Electric Application Container

EA Technology Requirement Specification Appendix C - 2626-RQSPC-SHT02-V00.02.01
Lucy Gridkey Sensor Container

Requirements.docx

- 1 of 4 -

Requirement Specification

Drawing Number 2626-RQSPC-SHT02-V00.02.01 Lucy Gridkey Sensor

Container Requirements.docx

Project Title OpenLV: Lucy GridKey Sensor Container

Requirements

Electronics Systems Project No. E717

Charge Code EX267

Supplier Lucy Gridkey

Request Date 2017/06/05

1 Background
EA Technology undertook an InnovateUK Energy Catalyst project with University of Manchester and Nortech

Management Ltd to develop a Common Application Framework for LV Network Management. The core software

platform developed by EA Technology under the project is called LV-CAP and consists of a number of Docker containers

communicating with each other using MQTT.

WPD has now been awarded a Network Innovation Competition (NIC) project to trial the LV-CAP platform on real

networks. This project is known as OpenLV. The OpenLV project will use the proven Lucy GridKey MCU520 measurement

unit to make electrical measurements of the substation load. To integrate the GridKey MCU520 into the LV-CAP platform

Lucy GridKey will create a sensor container for the LV-CAP platform to receive data from the GridKey MCU. This

specification details the LV-CAP GridKey Sensor Container required to meet the needs of the OpenLV Trial Programme.

2 Requirements

2.1 Hardware Environment
The OpenLV project hardware consists of an industrial PC based around a dual-core Intel Core i3 processor with 8GB of

RAM and a 512GB SSD. This PC provides the processing power and storage for the whole LV-CAP solution. It has two

Ethernet ports for network communications:

1. Local Ethernet link to the GridKey MCU520, fitted with an additional Ethernet module.

2. Ethernet link to a stand-alone 4G router which provides wide area network communications.

The GridKey Sensor Container will communicate directly with the GridKey MCU520 via the local Ethernet port. It will not

have access to the wide area communications network.

2.2 Base Operating System
The OpenLV project PC will be running 64-bit Ubuntu Server 16.04 LTS with current updates applied.

EA Technology Requirement Specification Appendix C - 2626-RQSPC-SHT02-V00.02.01
Lucy Gridkey Sensor Container

Requirements.docx

- 2 of 4 -

2.3 LV-CAP Environment
The GridKey Sensor Container must run as a "third party" container on the LV-CAP Platform. This is described in the

Public API document 2383-MANUL-V04.02.00, hereafter referred to as "the LV-CAP API".

In order to be deployed via the iHost management system, the maximum size of the GridKey Sensor Container as an

uncompressed TAR file is 100MB.

The GUID assigned to this container is "96d6f19b-7022-45f2-b753-cb5012626b4d"

The Docker "repository" string assigned to this container is "lucy/gridkeysensor". Each release of the GridKey Sensor

Container should be tagged with this repository string and its version number, separated by a colon. The version number

must monotonically increase with each release. For example:

lucy/gridkeysensor:0.1

lucy/gridkeysensor:0.2

lucy/gridkeysensor:1.0

lucy/gridkeysensor:1.1

lucy/gridkeysensor:1.3

lucy/gridkeysensor:2.0

These tags are important as they are used by Docker to load and run the Containers on the LV-CAP. Incorrect tags may

result in the incorrect version of the container being deployed and run. The tag of each released container must be

documented along with the released Container file.

2.4 Electrical Measurements
The following electrical measurements must be made available to the LV-CAP platform. Each measurement point should

be updated at intervals of 10 seconds or less.

The three phases shall be designated "L1", "L2" and "L3" as on the MCU520 hardware. The current measurement

channels shall be designated "Feeder1" through "Feeder5" as on the MCU520 hardware.

Other measurement data may be included if available.

2.4.1 Voltage Measurements
At the substation busbars:

• RMS Voltage phase to phase (x3)

• RMS Voltage phase to neutral (x3)

2.4.2 Current Measurements
For each circuit measured:

• RMS current in each phase

• Power factor for each phase

• Real and Reactive power flow each phase (including direction, so reverse power is read as negative current)

2.5 Output Messages
Each of the above measurements must be output as JSON messages on a separate MQTT topic, as described in the

Sensor Data API (Section 8.3 of the LV-CAP API). The format of each JSON message shall be the LV-CAP Scalar Object

EA Technology Requirement Specification Appendix C - 2626-RQSPC-SHT02-V00.02.01
Lucy Gridkey Sensor Container

Requirements.docx

- 3 of 4 -

Format as described in Section 9.1 of the LV-CAP API. The output topic names should be chosen as described in Section

4.4 of the LV-CAP API. A suggested set of topic names is given in Section 4. of this document.

Output messages must be produced at all times as described in Section 4.8 of the LV-CAP API, with the valid flag set

appropriately if there is a problem receiving data from the GridKey MCU.

The container may optionally provide measurement metadata as set out in Section 8.3.2 of the LV-CAP API.

2.6 Time
The LV-CAP system clock will be kept set accurately by LV-CAP using a combination of Network Time Protocol and GPS

time reference information. The messages output from the GridKey Sensor Container must contain time stamps which

are synchronised to this clock to avoid confusion.

2.7 Configuration
The GridKey Sensor Container must be configured via the standard LV-CAP configuration mechanism and a JSON

configuration file as described in Section 9.5 of the LV-CAP API. This file can be used to store any relevant configuration

parameters for the container. The following parameters must be configurable:

• The IP address of the GridKey MCU.

2.8 GridKey Firmware Update
The implementation of functionality to enable the firmware of the GridKey MCU to be updated in the field would be

desirable, but is not required at this stage of the project. It would be acceptable to implement this feature in a future

update to the Gridkey Sensor Container. The remote updating of containers on the LV-CAP platform is a core feature

which will be proven before deployment of the system, so such an update can readily be deployed to operational LV-

CAP systems.

In order to update the firmware on the MCU, two things need to happen:

1. The new firmware file is downloaded over the wide area network to the LV-CAP platform

2. The firmware is transmitted over the local Ethernet connection from the LV-CAP computer to the MCU.

The GridKey Sensor Container can access local file storage on the LV-CAP computer and the Ethernet link to the MCU.

The second step (updating the MCU from the local file) should be carried out by the Gridkey Sensor Container.

The GridKey Sensor Container will not have access to the wide area network and so should not perform the first step

(downloading firmware). There are several options for delivering the firmware update to the LV-CAP platform:

• The firmware file is packed within the GridKey Sensor Container image. When new firmware needs to be

deployed, a new release of the GridKey Sensor Container is made and deployed via the normal LV-CAP

mechanism. This will increase the size of the Container image however.

• The firmware file is separately downloaded via the normal LV-CAP mechanism and made available to the

GridKey Sensor Container for installation. This would require changes to the LV-CAP APIs and so will be difficult

to achieve for this project.

• The firmware file is downloaded by the Data Centre Communications Container, and transferred from that

container to the GridKey Sensor Container for installation. This requires a mechanism for the two containers to

transfer files between them to be designed and implemented, but does not affect the LV-CAP core.

EA Technology Requirement Specification Appendix C - 2626-RQSPC-SHT02-V00.02.01
Lucy Gridkey Sensor Container

Requirements.docx

- 4 of 4 -

3 Timescales
Delivery Date 2017/06/23

Prepared by Richard Ash

Date 2017/06/08

4 Proposed Output Topics
The following output topic names are proposed to comply with the requirements in Section 2.5 of this document. They

are based on the assumption that RMS values will be output once per second, and will need to be adjusted if this is not

the case.

For the measurements in Section 2.4.1 of this document:

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Busbar/voltage/1s/L1-N_RMS

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Busbar/voltage/1s/L2-N_RMS

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Busbar/voltage/1s/L3-N_RMS

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Busbar/voltage/1s/L1-L2_RMS

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Busbar/voltage/1s/L2-L3_RMS

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Busbar/voltage/1s/L3-L1_RMS

For the measurements in Section 2.4.2 of this document:

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Feeder1/current/1s/L1_RMS

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Feeder1/current/1s/L2_RMS

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Feeder1/current/1s/L3_RMS

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Feeder1/power_factor/1s/L1

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Feeder1/power_factor/1s/L2

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Feeder1/power_factor/1s/L3

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Feeder1/real_power/1s/L1

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Feeder1/real_power/1s/L2

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Feeder1/real_power/1s/L3

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Feeder1/reactive_power/1s/L1

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Feeder1/reactive_power/1s/L2

sensor/data/96d6f19b-7022-45f2-b753-cb5012626b4d/Feeder1/reactive_power/1s/L3

and similarly for each of the 5 feeders supported by the hardware.

1

	Appendix A - 2383-MANUL-V04.03.00 - LV Common Application Platform Public API.PDF
	Version History
	Contents
	Figures
	Tables
	1. Introduction
	2. Glossary
	3. Platform Overview
	4. General Principals
	4.1 Architecture
	4.2 Application Identification
	4.2.1 Legacy Applications

	4.3 Message Serialisation
	4.4 Topic Names
	4.5 Units
	4.6 Text Encoding
	4.7 Data Persistence
	4.8 Data Flow and Valid Flags
	4.9 Data Priority

	5. Start-up Procedures
	5.1 LV-CAP System Start
	5.1.1 Start-up of Core Services
	5.1.2 Start-up of Remaining Applications

	5.2 Application Start
	5.3 Required Subscriptions for all Applications

	6. Shutdown Procedure
	7. Data Storage
	8. Data Marketplace API
	8.1 MQTT Broker
	8.1.1 Payload Descriptions
	8.1.2 Security and Signing
	8.1.3 Last Will and Testament
	8.1.4 Quality of Service

	8.2 LV-CAP Core API
	8.2.1 Configuration
	8.2.2 Status
	8.2.3 Command
	8.2.4 Error

	8.3 Sensor Data API
	8.3.1 Sensor Readings
	8.3.2 Sensor Metadata

	8.4 Algorithm Data API
	8.5 Data Upload API
	8.5.1 Limits
	8.5.2 Examples

	8.6 Data Storage API

	9. JSON Object Structures
	9.1 Scalar Object Format
	9.2 Series Object Format
	9.3 Co-ordinate Object Format
	9.4 Data Series Metadata Object Format
	9.5 Application Configuration Format

	10. References
	Global Footprint
	Our Expertise

