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Executive summary

As one of the most promising pathways in the transition period towards the low carbon
economy, a large scale implementation of electric vehicles (EVs) is expected in the near future.
Concentration of EVs charging in a small area or within a short timedxaithatically affect

the load, especially the peak load in the distribution network. As a result, distribution
transformers are facing hazards of shortened lifetime due to extra loads, and direct failures
caused by potential overloads. Considering theslangmber of distribution transformers and

the massive investment involved, the adaptability of the population of distribution transformers
under futureEV scenaris should be assessed.

In this project an assessment strategy for the future adapyabfl distribution transformer
population undeEV scenaris is introduced. Assessing the adaptability is to assess the hot
spot temperature, losd-life, expected lifetime and failure probability of each individual in
the distibution transformer population

Determination of hespot temperature of distribution transformes essetial for the
assessmentln order to achieveaccurate prediction of ha&pot temperaturesinder EV
scenarig, thermalparameters should be refined for individual distributiondf@amers so that

their thermal characteristics can be reflected more accurately than using the generic values
recommended for all distribution transformers in the IEC loading guide. Two methods for the
refinement are proposed in thisoject One method igo curvefit hot-spot temperatures
measured irthe extended heat run tesind the other is to calculate each parameter with
developed equations in the loading guide with standard heat run test results.

The assessment strategyingroduced andlemonstated on a group of selected distribution
transformers from the population under thiEéescenaris, i.e. Business as usual (BAU), High
range and Extremeange scenariosyhich represen0%, 32% and 58.9%Vs penetration
levels respectively. Results show ah EVs chargingwould be lessconcerned on the
acceleration of thermal ageing and the corresponding increment ajf{os and reduced
lifetime than the direct failure due to bubblingince the peak load and kot temperature
underEV scenarie would be compensated by low values during thepafék time of a day,
which eventually leads to a moderate thermal ageing. Occasiooa#iyageing would be
resulted byoverwhelmingly high hespot temperatures, and the lifetinveuld be reducedo
an unacceptable levelHowever, m such occasiong)otspot temperatures woulde high
enough to trigger bubbling and cause direct failure of transforifieesefore, concerns on the
short term failuravould be prioritised over the reduction of lifetime due tinf term thermal
ageing.

In terms of the failure probability, results show thatdistributiontransformers are faain
failure risksdue to bubbling undéBAU scenario Failure starts under Higlangescenario. If
transformers possessing a failure piulity over 50% are identified as high risk, then 13% of
investigated transformers are at high risk under Hagtgescenario, whildt increases to 39%
under Extremeange scenario. Although older transformers tend to have higher failure
probabilities, itis found that the failure probability is dominantly controlled by the peak load,
other factors such as transformer age and installation conditions are less infld¢htedhold
peak load of around 1.5 p.u. is observed that distinguishes transfanrhayis risk from others
under Extremgange scenario. This observation coulé applied to assist the asset
management under futuE®/ scenariahat the peak load of distribution transforsiehould

be restricted below 1.5 p.u. to prevent potential faitlwe to bubbling.
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1. Introduction
1.1 Background

Humanity in the future is threatened by global warming. Therefore, preventing global warming
has long been recognised as a driving factor of the global transformation into a low carbon
economyln Europe, the European Council has set a target of redGeaen House Gas (GHG)
by 80% to 95% by 2050 compared to 1990, in order to keep the climate change be[dyv 2C
To realse this ambitious objectiveall sectos of theeconomy would require radical changes

to reduce their own GHG emissions.

Electric vehicles (EVs) are one of the most promising pathways in the transition period towards
thelow carbon economy, since they are playing a keyinadecarborsingthe transport sector,

whose overall share of the GH&ductionis anticipated as sigfitant as 21% by 2050[2].
However, to achieve that share, three in every four vehicles are expected to be replaced by EVs
[2]. To charge their batteries, EVs need to be connected to the electricity grid, where they are
equivalent to active loads. As a resthie distribution networkvill be affected by extra loads

due to a large scale of implementatiorEdfs.

EVsare directly plugged into the distribution network when charging, therefore their impacts
are immediate. Firstly, the system stability will be disturbed, and the potential issues have been
widely covered by existing researchi@®] such as voltage drops, voltage unbalances, network
losses and current harmonics. Secondly, load levels and load pifilesribution network

will be affected, which is more concerned in this project. Genera#hyaibrage load levalill

be lifted up. What is worse is EVs charging loads are more mobile and uncertain comparing to
normal loads due to the randomseeof clarging behaviours of E® users. Clustering, i.e.
concentration of EVs charging in a small area or within a short time, will dramatically increase
the load, especially the peak load, of the local distribution network, and potentially overload
its transforners. Consequently, these transformers are facing shortened lifetime due to extra

loads and potential failures due to overloads.

In the UK, distribution transformers generally refer to transformers that step down voltages
from 11 kV or 6.6 kV to 0.4 kV, anthe typical power ratings are ranging from 15 kVA to
2000 kVA [1Q (2500 kVA in IEC 600767 [11]). Unlike medium or high voltage power

transformers, distribution transformers normally do not operate in parallel in low voltage
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networks Also, snce feeders in the UK are typically configured in a radial fagtalure of

one single distribution transformer will lead to the disconnection of the whole area rooted at it.
For a Distribution Network Operator (DNO), this should be prevented wherdeang the
consequent penalties and compensations it has to pBlyet@®ffice of Gas and Electricity
Markets(OFGEM) and customef42].

1.2 Statement of problem

The prevailing of low carbon economy maynséorm the distribution networknd reshape its
loading scenarios with novel schemes such as EVs. Consequetlyemt or excessive
loadings will challenge the large and old distribution transformer population more than ever
before by increasing the hepot temperature, accelerating ageing, shortening lifetimes and
even causing direct premature failures. Therefiorerder to minimise customer interruptions
and maximisethe return on investment, it is aecessity to face the challen@est by
researching how thelistribution transformempopulation will be impacted by futurgVv

scenarig. As a status quo, the foling facts are urging such a research.
1 Large population of old distribution transformers

ENW has a population of more than 30,000 distribution transformers. Theraviged age
profile of this population is shown irigure1.1. More than 40% transformers are older than
40 years.According to calculation results that will be shown later in this repddgro
transformers tend to have ageingfdrpducts accumulated iie the transformer such as
moisture, which will increase the operational ridks lowering the threshold operational

temperature that triggers direct failufiherefore, they are more vulnerabldedd scenaris.
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Figure 1.1: Age profile of ENW distribution transformer population
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1 Diverse variations of designs

Transformer design can be significandistinguished from manufacturer to manufacturer,
since different manufacturers may apply différenaterials and techniques to meet the
specifications. As a result, transformers with different designs will have different responses to
same loads. Transformers oétBANW population ardesigned and produced by more than 240
manufacturersFigure 1.2 shows compositions of the population in term of manufacturers.
Only the top 10 manufacturers are specifically labelled, whose transformers count for 65 % of
the whole ppulation. Therefore, in order to take account of design variations, a €design

dependent approach should be pursued when assessing the population.

7

Figure 1.2: Manufacturer composition of ENW distribution tr ansformer population
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M Lack of research

Transformer researches have been focused on high voltage power transformers due to their
capitalconcentrated nature and potential severe -failstre consequences. However,
condition monitoring tools and asset managetistrategies developed for power transformers

may not be feasible for a direct transplant onto distribution transformers.

Comparing to high voltage power transformers, distribution transformers are smaller, lighter
and manufactured much quicker. They are likely made in different factories, and-papser
drying equipment is not generally availaljied]. Therefore, the moisture content in paper
insulation of a new distributiomansformer is normally around 1% while it is 0.5% for power
transformers. Also, unlike power transformers, most distribution transformers do not equip the
oil conservator and breather, which aim to mitigate moisture ingression from atmosphere to

transforme oil and paper. Therefore distribution transformers tend to have relatively higher

7
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initial levels and faster accumulation of moisture in paper, which potentially increase failure
risks due to breakdown caused by bubbling under higisgatt temperature duced by high

loads.
9 Lack of data

Unlike high voltage power transformers that are closely monitatisttibution transformers

are more |likely to be Afit and forgotteno. T
and short replacement timeaythmore importantly it is because past operating experiences have
indicated that distribution transformers would work well under current loading conditions since

their lifespans are always exceeding the originally expected lifetimes.

However, as aforemdnhed,under future loading scenarios when low carbon technologies

such as EVs are widely implemented, distribution transformers would have to face
unprecedented challenges. Under such circumstanckse convention of Afoi
would consequentlyesult inan embarrassing situation that no data co@ddund for the

research aiming to understand the challengedagénerate solutiong herefore, alternative
approaches such as modelling should be developed to approximate the necessaryhaata for t

research with a reasonable accuracy.

To summarise, the distribution transformer population is concerned underEwtseenaris

on hazards of reduced lifetime due to the extra loads brought by EVs charging and on hazards
of immediate failure causdoy breakdown due to bubbling when the-Bpbt temperature
exceeds the bubbling inception temperature. Therefore, in order to protect the investment and
maintain the distribution transformer population in a safe and reliable state, an assessment

strategymust beproduced fothe adaptability under futuEeV scenaris.
1.3  Objective and methodology of research

This work aims to assess the adaptability of the distribution transformer population of ENW in

futureEV scenarigs. The main objectives are as follows:

1. Define EV scenaris based on projection of EVs penetration in the future, and model
EVs charging | oad in a stochastic sgnanner

users.
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2. Refine thermal parameters for individual transformers to reflect their diffeyence
thermal characteristics based on IEC 60@7éermal model. Calculate hspot
temperature, resulting losd-life and lifetime for individual transformers with refined
thermal parameters undgé¥ scenaris.

3. Model cyclic loadand ambient profilesof individual transformers assuming the

measured data are not available.

4. Estimate bubbling inception temperature of individual transformers based on their

moisture content levels in paper.

5. Estimate failure probabilities of individual transformers if failure occurs due to

bubbling once the hetpot temperature exceeds the bubbling inception temperature.

6. Assess the population in terms of the-bpbt temperature, the resulting lagdife and
expected lifetime, and failure probabilities un&&f scenaris.

Methodologies serving each objective are briefly summarisédbiel-1.

Table 1-1: Methodologies servingobjectives of this project

Background Objective Methodologies
Future loading 1. EV scenaris and charging T Stochastic modelling based on existi
scenarios load literature.

i Least Square Estimation fitting wit
measured hespot temperature durin
extended heat run test.

Diverse variation I Calculate each parameter based
of designs extended heat run test results.

2. (b) Calculate of haespot IEC 600767 thermal model.
temperature, lossf-life and IEC ageing model.
lifetime.

2. (a) Refinement of thermg
parameters

= =

1 Modelling based on customer informati
according to Elexon profiles.
1 Modelling based on yearly weightq

3. (@) Cyclic load modelling

Lack of data 3. (b) Ambient temperaturs amgient modelprovided in IEC loading
modelling guide. .
9 Historical data of the region from Mg
Office.
1 Bubbling inception temperature mod
4. Bubbling inception from literature.
Lack of research temperature 1 Modelling between moisture in paper a

transformer age based on scenarialgsis.

5. Failure probability 1 Monte-Carlo simulation.
1 Statistical analysis.
Aim of project 6. Population assessment 1 Results demonstration with a representa
group.
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2. Strategy assessment strategy for adaptability of distribution

transformers under EV scenarios

2.1 Introduction to assessment strategy

In order to assess the adaptability of distribution transformer population, a systematic strategy

is proposed in this world diagram summarising the strategy is showRigure2.1.

Input Calculation process Output
L 1 L
f LI | || |
EVs EVs
penetration Y >  charging
level load profil
= 2ac prote Total load
profile
Base load
Power Rate i~ profile
Thermal
Customer modelling
information
v Loss-of-life
Ambient IEC thermal | 5] Hot-spot
temperature i’ model temperature
Expected
lifetime
Thermal
parameters
A Moisture in Moisture in
&e oil model i oil
\l’ Thermal
Moisture in Moisture in Jailnre
paper model paper modelling
o e A
model temperature probability

Figure 2.1: Detailed diagram ofassessment strategy

The strategy mainly contains two parts, i.e. thermal modelling and thermal failure modelling.

Thermal modelling is for the estimation of kgpot temperatures of individudistribution

transformers, which are essential for thecghtion of the los®f-life and lifetime. Hotspot

temperatures are estimated by IEC thermal model, which requires three elements as inputs. The

first element is the thermal characteristics element, which indicates the thermal parameters.

Ideally, thermaparameters should be refined for individual transformers to reflect the design

dependent thermal characteristics of different transfosmlwo methods are proposed in this

work to refine thermal parameters. Cuifitting the measured heatpot and tomil

10
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temperatures during the extended heat run test is the preferred method since it leads to the most
accurate refinement. The other method is to calculate each parameter with data from standard

heat run tests.

The second element is the load element, whithbe the total load of the current load plus
potential EVs charging load under futlg® scenarigs. The current load refers to day to day
load cycles that distribution transformers are carrying. Measurements would be always
preferred if available. Otheise, Elexon profilescould be usedo generate distribution
transformedoad profiles with informatiorof numbes and typs of its customers. As to EVs
charging load, considering the random charging behaviours of EVs owners, probabilistic
modelling is impémented in order to simulate the randomness of charging power, charging

duration and charging start time of individual EVs.

The last element is the environment element, which refers to thergndgmperature and the
indoorbutdoor installation of distriltion transformers. A yearly weighted average ambient
temperature is allowed by IEC loading guide when calculating theguttemperature and
lossof-life with IEC thermal modellt can bederived based on historicambientdata and

used for distribution transformerthat do not havemeasured ambient temperatures.
Additionally, the enclosure affects distribution transformers in two folds. Firstly, it causes extra
temperature rises on the ambient and-dbpise. Secondly, iprotects transformers from
rainfall or other precipitation weathers so that the moisture accumulation in indoor transformers
tends to be slower than in outdoor oaesording to the calculation in this wokonsequently,
indoor transformers tend to exparce higher operational temperatures but lower moisture

content in oil.

Thermal failure modelling is aimed to define and quantify the short term failure probability of
distribution transformers undé&V scenaris. Immediate failure due to bubblimgidentified

as the fatal risk in the short term of distribution transformers when thgpbbtemperature
exceeds the bubbling inception temperature. Therefore, the failure probability is defined as the
probability of the hospot temperature exceedittge bubbling inception temperature under

EV scenaris.

Thehots pot temperature can be calcul at g with
widely accepted model isntroduced and applied to calate the bubbling inception

temperature. The model requires three inpiithoisture in paper, gas content in oil and oil

11
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depth. The moisture in paper is the dominant factor determining the bubbling inception
temperature; therefore it is used as theratled parameter in the assessment of the population.
However, unlike moisture in oil, moisture in paper is difficult to measure due to the practical
difficulty in taking samples of insulation paper. Therefore, a method is introduced in this work
to estimaée the moisture in paper level of distribution transformers with the moisture in oil
content based on the equilibrium curve of moisture dynamics between oil and paper. Eventually,
in case of that the moisture in oil level is unknown; an empirical moalddl be built to
estimate the moisture in oil content of distribution transformers with the transformer age by

curvefitting the available data collected from previous oil tests.

In summarypased orthe diagram shown iRigure2.1, the assessment strategy requingsit

da@ includingtransformer age and ratingystallation condition (indoasltdoor), customer
information (number and type), ambient f@mature, thermal parameters and EVs penetration
levels (defined byeV scenarig). The final outputs are yearly lesElife, expected lifetime

and failure probability undetefinedEV scenaris.

In this chapter, modelling process of each required elewietlie assessment strategy is
introduced, and the strategy is demonstrated on a prototype distribution transformer where the

measurements ddad and ambient data are available.

2.2 Thermal modelling: d etermination of hot -spot temperature under EV

scenario s

Hot-spot temperaturean be regarded agumctionof the load factor. However, under the same
load profile, different transformemwill have differenthot-spot temperature profiledue to
different thermal characteristics, which are inherently determimgdransformer designs.
Therefore, parameters of the function shouldirfzbvidualtdependent so that variations of

thermal characteristics can be reflected.

IEC 600767: 2005 thermal mod¢l1] provides such set of thermalunctiors. It is developed
based on the thermal diagram as showRigure 2.2, where the hespot temperature is the
sum of ambiat temperature, tepil temperature rise over ambient and-Bpot to topoil

gradient.

12
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Figure 2.2: Thermal diagram [11]

Since inservice transformers are subject to time varying loads and ambient temperatures, IEC
600767: 2005 thermal model estimates-4spbt temperature under arbitrary thverying load

and ambient temperatures. The full set of equations when load exBasshown in Equation

(2-1) to (2-5).

(o (t) =ad +o(l3q h(t'l) (2-1)

£ a+r3® 8 P
Dg(t) =hd + %ﬁlﬁ;— 0 o Uf(D (2-2)
i é a

Dq(t) = PqdH+g K’ 3.} -Lb) (2-3)
where f,(t) and f,(t) are

f, (t) :( QUICH 3ot)) (2-4)

- é- t)/(kzz 3\,\;) _é- 3é' t)/(_ E)/kzz)

f,(t) =ky 1 (ky 1) EéL (2-5)
When loaddecreases, the equation describingdpuit rise over toil, i.e. Equation(2-3), is
simplified as

Dq(t) =R+ 4 K (26)

13
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Input data required in the model are ambient temperafui@nd load factoiK , and the output
is timevarying hotspot temperaturey, (t) Other parameters are thermal parameters that

reflect thermal characteristics of a transformer, thus being indivatkéndent.

IEC loading guide provides one set of values of thermal parameters for distribution
transformers, which are considerednservative and leading to owestimated hespot
temperaturg¢l4]. In order to obtain more accurate{spiot temperature by taking consideration

of individual differences in designs undev scenarig, these parameters should be refined for
individual transformers. In this worknethods are proposed and validated for refinement of

thermal parameters for individual transformers.
2.2.1 Refinement of IEC thermal model parameters for prototype transféyoenrvefitting

When estimating hegpot temperatures under arbitrary loads with BBC model, thermal
parameters shown iable 2-1 should be determined for individual transformers for better
accuracy. Recommended values for disttion transformers given in the IEC loading guide
are also shown ifable2-1, which are generic values and tend to reach conservatispbbt

tempeaturesTwo approaches of refining IEC thermal parameters are introduced in this section.

Table 2-1: IEC 60076 thermal model parameters and recommended values given in IEC 606762005[11]

Parameters | Dgor | R gr H X y to | tw | ki | ka1 | ke

Recommended go« | o+ | 16.36| 1.10 | 0.80| 1.60| 180 | 4 | 1 | 1 | 2
values

*: No recommended values are given in IEC loading guitiese aluesare derived fronguaranteed values seen fraistribution
transformer specificatiohen estimating hespot temperaturfor a transformer without any information, these values may be used.

a. Refinement of thermal parameters by cufitting

One approachs to curvefit the measured tepil and hotspot temperatures during the
extended heat run test with IEC thermal modgliagions to acquire the best fit thermal

parameters.

The estimation process has two steps. The first step is to estimatesw, ki1, k22 and
H3 g all together with the hegpot to topoil gradient using Equatiof2-3) and(2-5). H?3 gr
is regarded as one single parameter, smrcand H are apparently interdependent and no
definite value can be determined for one unlaesother is known. The second step is to input

to obtained from the first step into Equati¢22) and (2-4) and thenestimatex and ki1

14
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together with the tojpil temperature measurements using Equat®?) and(2-4). The load
factorK is an input. The rateldad to neload loss ratidR can be calculated with the rated load
and neload losses given by the nameplate of the transformethandted toil rise Dgor is

obtained from heat run test results.

Due to the nosinearity of equations subjected to the cufing, it is concerned that the

results may be dependent on the initial val\Més sensitivity studies, it is found that parameters

ki1, K22, o and tw areinterdependent and no unique values could be deterntitmeever,
determinate valueare obtained fato/ k22, w3 K22 andfo3 ki1. Thus the conclusion can be

drawn that definite values cannot be determinedcfarkzz, fo andzw through curvefitting

unless any of them is known so that others can be calculated based on the estimated results of
tol K22, tw® K22 and o3 k1. Besides this conclusion, there are some other observatiens

made:
1 kaiis independent on its initial value during the cufitng.

1 ku, k22, 1o and tw are interdependent.o is proportional tokzz; twis reversely

proportional tokz2z; ki1 is reversely proportional too .

2.2.2 Refinement of IEC thermal model parameters for prototype transformer by calculating

with heat run test data

The curvefitting approach requires hapot temperature measurements during heat run test,
which are often unavailable for existing transformers. Therefore, the other approach of refining
IEC thermal parameters is proposed to calculate each parametestamittard heat run test

results.

In practice, heat run tests can be generally summarised as two regimes, which are conventional
and extended heat run te$tie main difference is that the conventional test only performs
under the rated load, but the exded one performs under three individual loads, which are
usually 0.7, 1.0 and 1.25 p.u. representing 50%, 100% and 125% of rated losses. A summary
of two regimes of heat run tests is provided@able2-2, and so are the obtainable IEC thermal
parameters under each heat run test regime. In addition, since the conventional heat run test
only provide temperature data under the rated load, the corresponding resultara ther
parameters can therefore only be used for the prediction ci/aanyeng hotspot temperatures

under the rated load. On the other hand, thermal parameters calculated with temperature data

15
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obtained during the extended heat run test can be applieddizctpimevarying hotspot

temperatures under arbitrary loads.

Table 2-2;: Summary of conventional and extended heat run tests

Heat run test . Hot-spot temperaure
regimes Measured data Obtainable thermal parameters that can be calculated
accurately
Ambient
temperature

Rated topoil rise; rated average

Conventional heaf TOP-0il temperature|  \inding to oil gradient; winding | . 1 'MeVarying hotspot

temperatures under rate

run test Bottomtoil time constant; toil and average load
temperature oil time constants
Winding resistance
Data above under Time-varying hotspot
Extendteeitheat rur 0.7, 1.0 and 1.25 | Parameters above; oil and windin temperatures under
loads exponents arbitrary loads

Theprocess of calculating each parameter with heat run test results are presented as below.
1 The rated togil rise Dgo, rated

qu, rated — @ rated - a (2-7)

1 The rated average winding to oil gradiegt

O = Qwraed - @B ratec (2-8)

The winding resistance curve is first converted into the winténgperature curve which is
extrapolated to the instant of the transformer shutdown to derive the average winding

temperaturdy either exponential or polynomial functiptb].
1 The winding time constarttw

tw can be derived with the measured winding resistance curve. After converting the resistance
curve into a temperature curviey can be obtained byurvefitting the temperature curve it
an exponential function as

t

qw, rated(t) = Qe rated «k ® o+ ea (2-9)
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For transformers with large oil time constants, e.g. oil natural (ON) cooled transformers with
relatively low ratings, the averagel temperature drop may be ignorgd)]. In this case, the

term k3 t can be ignored.

Polynomial fitting is also used in practice to extrapolate the average winding temperature curve.
In this casefw can be obtained by making a tangent of the fitted curve at the instant of
transformer shutdown. The crossing pointhef tangent and the averagiétemperature line

indicatest w.
1 The topoil time constant o, wp

to,10p Canbe obtained by two ways. The first is through ctiitteng the complete temperature

rise curve of the topil temperature under a constant load with Equaan). This requires
the topoil temperature regularly measured, and also the test load should remain the same for
the entire test.

Do, ratea(t) = @i (B €'“°") ( 3ga@ 09 (2-10)

Another method is through an equation giretEEE loading guide[16],

C3 Do.rated 60
P

(2-11)

fo,top:

C=0.1323Ma 6€£.0882 Mr 0#4Mo3? (for ONAN cooling (2-12

The only required datum frotheheat run test i©go, rated, Since the values &, Ma, and Mo

can be obtained on the transformer nameplate.
1 Theaverageil time constant.and thermal constarki:
to andtowp are linked byki1, as

Kit=Ffotp/ & (2-13)

to can be also calculated as

_ C3 Wave, rated 60
P

to (2-14)

1 The oil exponenk

17



y
er

The Universit
of Manchest

MANCHESTER electr-icityy

x can bederived based oBquation(2-15).

+R 3K?
DQO :E%]X 3 @rated (2'15)

2
3
To derivex, Dgo/ D@ rated is calculated and plotted against the valugef% in a loglog

scale. Then the slope of the straight line thestfits all the points can be obtainedxas
1 The winding exponeny
y can bederived based oBquation(2-16).

g=g 3KY (2-16)

To derivey, g/ g is calculated and plotted against the corresponding kad a loglog

scale. Then the slope of the straight line tiestfits all the points can be obtained as

Theoreticaly, in addition to the rated load test, only one-nated load test is required to derive

exponentx and y. However, in order to make the derived exponents more representative, at

least one unddoad testand one overload test are required in peacti

Three parameters dfl, k21 and k22 camot be derived only with thermocouple measured
temperature data during the heat run test, therefore recommended véi@s$aading guide

have to be used.

2.2.3 Comparisons betwedwo methods of refining IEC thermal parameters

Two approaches of refining IEC thermal parameters are summarised and compgebtein

2-3. Basically, the curwditting method provides better accuracy when predictingspot
temperatures under arbitrary loads but it needs theguittemperature measurements which
require theinstallation of optic fibre sensors at the 43pbt location. As an alternative,
calculating method can be applied on any transformers that possess results of a standard heat

run test.
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Table 2-3: A general comparison between two methods for refinement of thermal parameters

Refinement . .
method Required data Advantage Disadvantage
All parameters can be
- Nameplate information, hef obtained. Require optic fibre sensor
Curvefitting .
spot and togil temperature Better acaracy when for hotspot temperature
method L
measurements predicting hotspot measurement.
temperatures.
Do not require additional k21and k22 cannot be
Calculatin Nameplate information, Can be gat?i.ed for an =) obianed. h
9 | measured data of a standa P y oorér accuracy when
method transformers as long as the predicting hotspot
heat run test
heat run test data are temperatures.
available.

Two approaches are applied on a prototype distribution transf Resultant parameters are
presented i able2-4, where the recommended values of IEC loading guide are also included

for the comparison

Table 2-4: Thermal parameters refined by two methods

Refinement 3
method Dgor R H3 o X Yy to tw k11 ko1 | k22

Curvefiting | 5651 g 67| 844 |0.72|1.08| 180 |21.7|1.18| 2.83| 0.91
method

Calculating method| 50.4| 8.67| 14.5 | 0.77|2.39| 159.6| 11.3| 1.26| 1 2
IEC recommended| 60 9 16.36 | 1.1 | 0.8 | 1.60| 180 | 4 1 1

To verify the refined thermal parameters,-Bpbt temperatures are calculated with refined

parameters under different loadings and compared with measurements.
a. Comparison under heat run test loads

Firstly, hotspot temperatures calculated with refinedriied parameters are compared with
measurements under the load profile of the heat run test, and alspohdemperatures
calculated with IEC recommended parameters are included in the comparison as shown in

Figure2.3. Error analysis is provided ifable2-5.
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120 T . :
—Hot-spot rise measured
1107 ... Hot-spot rise scenario one
100 Hot-spot rise scenario two
9ol Hot-spot rise scenario three
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Hot-spot rise(K)

10 # 0.7 p.u. constant load test 1.0 p.u. constant load test 1.25/p.u. constant load test

0 6 12 18 24 30 36 42 48 54 60 66 72
Time (hour)

Figure 2.3: Calculated hot-spot temperatures with thermal parametersrefined by two methods under heat run test

loads

Table 2-5: Error analysis of hot-spot temperatures calculated with thermal parameters refined bywo methods under

heat run test loads

Refinement method Maximum error (K) Mean error (K)
Curvefitting method 3.53 -0.17
Calculating method 10.25 0.91

IEC recommended 25.87 12.14

Under heat run test load, refined thermal parametdisr better accuracy than IEC
recommended parameters by reducing the maximum error from 25.87 to 8aéth Kurve
fitting method) and 10.25 K (with calculating methodhd by almost eliminating the mean

error.
b. Comparison under cyclic loads

It may be argued that ieed parameters are obtained by ctiitteng the measured data that

is then used in this comparison so that good fitsnexpected. Therefore, anottverification

is conducted by comparing calculated and measuregpwttemperatures under dynamic
loads that the prototype transformer is undertaking during its daily operation in a 6.6 kV
substation. Same parameters as showrable2-4 are used. The load and ambient profiles of

7 consecutive days in September 2013 are used for the calculation.
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Figure 2.4: Calculated hot-spot temperatures with thermal parametersrefined by two methodsunder cyclic loads

Table 2-6: Error analysis of hot-spot temperatures calculated with thermal parameters refined by two methodsnder

cyclic loads
Refinement method Maximum error (K) Mean error (K)
Curvefitting method 4.16 0.40
Calculating method -7.40 -2.38
IEC recommended 8.15 3.58

Error analysis inTable 2-6 shows that the maximum error is reduced f@16K to 4.16 K
(with curvefitting method) and7.40K (with calculating methodby using refined thermal
parametersin the meantime, the meagrror is almost eliminated by using cu+fited
parameters. Therefore, curfited method is preferred to refine thermal parameters when

predicting hotspot temperatures under dynamic loads.

2.3  Thermal failure modelling : determination of failure probability under EV

scenario s

EVs charging may cause immediate failure of transformers due to bubbling, which greatly
increases the operational risk in the short term perspective. When bubbling happens, dielectric
strength of the transformer insulation system isekesed due to the evolution of free gas from

the insulation of winding conductor, and breakdown would occur. Bubbling is triggered by
temperatures; therefore the bubbling inception temperature is regarded as the criipat hot
temperature for the trar®imer to avoid. For example, 140 € is regulated in IEC loading guide

as the hospot temperature limit for distribution transformers under normal cyclic loads due to

the concerns over bubblihfl].
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In order to investigate EVs effects on distribution transformers in the short term, failure
probability due to bubbling und&V scenaris is modelled. The failure probability is defined

as the probability of the hafpot temperature exeding the bubbling inception temperature.

2.3.1 Modelling of bubbling inception temperature

Past researchell3, 17, 18] have shown that bubbling inception temperature is highly
dependent on the moisture level of insulation paper of the transformer, and is also affected by
the gas content and oil pressure. OommEs| proposed and verified a model for the

calculation of bubbling inception temperature in transformers as shown in Eqaatipn

T =6996.7/(22.454+1.44953 W 4R )&43%W (g 3B (2-17)

whereT is the bubbling inception temperatureknW is the moisture in paper in % (mass to

mass) P is the oil pressure in torr amgds the total gas content in % (volume to volume).

Sensitivity studies have shown that bubbling inception temperatai@msantlycontrolled
by the moisture level in paper, while it is insensitive to the oil presancegas contenFor
example, thebulbling inception temperature is lifted @round3 K when theoil depth is
increased fronl meter to3 metersEffects of @s contenis increasing with moisture level; for
example, a decrease of over 15 K can be observed for bubbling inception tempenature
the gas content changes from 1% to 9% under the moisture in paper content of 10%.

Due to the dominating role that moisture in paper plays in determining the bubbling inception
temperature, it is essential to model the moisture content in paperlaot rdifferent

transformer conditions.

2.3.2 Modelling of moisture content in paper

It is difficult to sample the insulation paper and measure its moisture content in operational
transformers. As an alternative to the direct measurement, equilibrium curves have been
developed for the estimation of moisture content of paper with tempeeatdmoisture in oil.
Equilibrium curves are developed based on the fact that the moisture distribution in transformer
insulation system is at equilibrium state between oil and paper which depends on the
temperaturg19]. Different equilibriumcurves have been developed by several aufl2frs

23], and Fesslef24] proposed equations of the equilibrium curves which are shown as

Equation(2-18) to (2-21).
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C=2.173310" p,0%68 4725d (2-18)

pv = PPM/ PPMat 2 p; sai (2-19

PPMsar=10AB/D (2-20)
(T Teys (@tb {Te-Thte (T -Ti)

Py, sat= 7%“0 30 T 1l (Te-T) (2-21)

whereC is the moisture in papen %; T is the temperature of the equilibrium state irFieM

is the moisture in oiin ppm; pv is the partial pressure of water vapour in atm; the subscript
satindicates the saturated stafe; is the critical pressure of watermmmHgwhich is a constant;

Tc is the critical temperature of waterKnwhich is a constan$, B, a, b, ¢, andd are constants

whose value fomineral oilare shown imable2-7.

Table2-7. Constant values in Fesslerds equations

A B a b C d Pe Te
7.44 1686 | 3.24 | 586 10°% | 1.172 108 | 2.19 10° | 1.66® 10° | 647.26

To briefly explain the equations of equilibrium curves, Equatars) is proposed by Fessler

[24] for the modelling of motsire distribution in mineral cipaper insulation system under
equilibrium state, and it requires the partial pressure of water and temperature on the interface
of oil and paper as inputs. The partial pressure of water can be obtained by Eguajicand

it is proportional to partial pressure in saturatigm, éat) and the relative humidity which can

be expressed as the ratio of moisture in 8PM ) to the water saturation solubility of oil
(PPMeat). PPMsat is temperature dependent and can be calculated by Equaz@nwhereA

andB are constant parametergy, sat can be calculated by Equatign21) which is proposed

by Foss if25].

2.3.3 Modelling of failure probability due to bubbling

With equilibrium curves, moisture in paper can be determined with temperature and moisture
in oil under the assumption of equilibrium state. Obtained moistyr&per can then be applied

in bubbling inception model to calculate the inception temperature and compare with-the hot
spot temperature of the transformer in order to investigate if the transforrhiilwilhe flow
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chart shown irFigure2.5 demonstrates how the failure probability of transformers is modelled

Calculate HST without
EVs

underEV scenaris.

Estimate paper moisture
assuming equilibrium
reached

Calculate bubbling
inception temperature

l

Calculate HST with EVs
(Monte-Carlo simulations)

|

Determine failure
probability

Figure 2.5: Flow chart of modelling failure probability under EV scenarics

However, equilibrium conditions are generally not attained during the operation of
transformers due to the variation of load and temperature. Nevertheless, since the time constant
of the diffusion of moisture in oil and paper is much larger than the tonstant of oil
temperature change, the moisture in paper is not varying as significantly as the temperature
when the load regularly changes between its peak and valley values in a daily cyclic load.
Therefore, it is assumed that equilibrium is achievecuad equivalent temperature which is

taken as the average value of the temperature of a day.

Since the hespot is the most concerned location in transformers, the oil temperature at the
hotspot location should be used to derive the equivalent temperander which the
equilibrium state is assumed. However, due to the unavailability of the oil temperature adhere

to the hotspot, the hespot temperature is used instead.

EVs charging affects mainly the peak hours of a day, and it is assumed thatish&enin

paper does not change significantly by EVs charging using the assumption that the charging
time is not long enough for the moisture distribution between oil and paper to follow the change
of the temperature. Therefore, the moisture level in pdpgermined with the equilibrium
under the average hepot temperature of a day is used for the calculation of bubbling inception

temperature.
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Considering the uncertainties of EVs charging, Mab#glo simulations are performed for the
calculation of the hespot temperatures unde¥ scenarig, and the results are compared with
bubbling inception temperature to determine the failure probabaitych is defined as the

probability of the hespot temperature exceeding the bubbling inception temperature.

2.4 EV scenarios

Department for Transport (DfT) introduced several scenarios to project the EVs uptake up to
2030 in[26], where it assumed the total number of vehicles on road in 2030 in the UK would
be 35 million, and depending on differdf/ scenarig, the total nmber of EVs (including

BEVs and PHEVs) would be as shownTiable2-8.

Table 2-8: EV scenarics defined by DfT report[26]

Scenarios Number of EVs (million) in Penetration level (%) in
2030 2030
Business as usual (BAU) 8.6 8.6
High-range 32.0 32.0
Extremerange 58.9 58.9

The penetration level is the ratio of the number of EVs to the total number of vehicles in the
UK. Threescenarios are introduced[i@g] to project the strength of demand of EVs in the UK.
Extremerange scenario is of the worst expected scenario; therefore it is investigated in terms
of its impacts on distribution transformers. In adifititwo other scenarios are investigdtad
comparisonwhich are Higkhrange scenario and Business as usual (BAU) scenario. To simplify

the BAU scenario, the EVs penetration level is assumed as 0 %.

BAU scenario, Higkrange scenario and Extrefrenge scearioare going to be investigated

to show how distribution transformevell be affected and the penetration level of three
scenarios ar@%, 32% and 58.9% respectively. When modelling the EVs charging load, the
number of EVs are determined by multiplg the EVs penetration level with the number of
customers connected to the transformer based on the undoubtedly simple assumption that one

customer owns one vehicle.

25



MANCHESTER electr-icityy

y
er

The Universit
of Manchest

2.4.1 Modelling of EVs Charing load

In order to simulate EVs charging load as realistipassible, a stochastic approach is utilised,
which probabilistically models EVs types, chargingvweo, charging start time and statk
charge (SOChransferred to the EVs battery.

a. EVstypes

According to the statistics of registered vehicles from DfT by 4@¥h around 50% of EVs
on road are BEVs (17826) and the other 50% are PHEVs (17415), and the most popular models

of EVs on road are shown irable2-9.

Table 2-9: Most popular EVs models in the UK by 201527)

Models Market Battery | Battery capacity | Max electric BEV /
share (%) type (kWh) range (mile) PHEV

Mitsubishi 34.2 Li-ion 12 34 PHEV

Outlander

Nissan Leaf 26.4 Li-ion 24 120 BEV
BMW i3 7.0 Li-ion 22 100 BEV
Renault Zoe 5.9 Li-ion 22 130 BEV

Toyota Prius 4.1 Li-ion 4.4 14 PHEV

Considering the dominating shares of the top two EV types, it is assumed in this study that all
BEVs are Nissan Leaf and all PHEVs are Mitsubishi Outlander. Therefore, all EVs charged in
this study are 50% probability of Nissan Leaf and 50% probabilibitsubishi Outlander.

Li-ion batteries have a generic charging pattern, which is composed of three stages, i.e. pre
charging, current regulation and voltage regulation stf2f@s The duration of each stage
could vary depending on a few factors such as battery maeelperature, battery SOC and
charging power. However, detailed modelling of the chargiradile of Li-ion batteries is
beyond the scope of this work, therefore the charging profile of EVs battery is simplified as a

constant value
b. Charging power

Generally speaking, there are three types of charging in terms of charging power, which are
slow charging (up to 3 kW), fast charging (7 to 22 kW) and rapid charging (43 to 50 kW). In
residential properties, the maximum allowed power is around 1P2&Vtherefore slow amh

fast charging are applied for domestic charging. According to statistics of charging points in

the UK in 2015, the ratio of fast charging to slow charging points is aroun®d:3n this
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study, it is assumed that the charging power is 70% probability of 7 kW and 30% probability
of 3 kW.

The efficiency of charging is depending on a few factors such as temperature, changng p
and energy transferred in a single chaf@d] compares charging efficiency under various
conditions and finds the efficiency could vary from 75% to 91%. In this study, the charging

efficiency is assumed as 85%.
c. Charging start time

Past researchd®9, 32, 33] often model the charging start time based on the traffic data or
home arrival time by assuming EVs users start to charge theirs vehicles immediately or one
hour after ariving home. The modelling of charging start time can be improved by using data

that observed and collected by EVs trials in the UK.

The Technology Strategy Board (TSB) launched the Witna Carbon Vehicle Demonstrator
(ULCVD) programme in 2008, througthich 349 EVs were deployed, and data were collected
from over 276000 individual trips and 51000 charging evE3ds36]. Charging start times
were monitored and summarised as showrigure?2.6.
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TIME (24HR)
Figure 2.6: Charging start times monitored in Ultra-Low Carbon Vehicle Demonstrator (ULCVD) [35]

According to the monitored data, charging starts through the whole day, but a concentration
can be seen during the peak time around 18:30, when people get home from work. As a matter
of fact, charging in the morning or afternoon mostlygeays in work places or public charging

points. Therefore, in this study, in order to simulate the domestic charging, the charging start
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time is assumed to follow a normal distribution with the mean of 18:30 and the standard

deviation of 1 hour.
d. SOC transfeed to EVs battery

ULCVD monitored how much SOC was transferred in a single charging everitigund2.7

shows the statistics of the data. The SOC transferr@dimgle charging event is the difference
between the SOC at the end of a charging event and the SOC before it. ULCVD found that
most EVs were charged full with the majority of charging events (>70% of all monitored
charging events) ending at over 95% S[34]. Therefore, in this study, it is assumed that all

EVs are charged once a day and they are always charged full.

15

=
N

©

Probability (%)
(2]

w
N

0 10 20 30 40 50 60 70 80 90 100
SOC transferred (%)

Figure 2.7: SOC transferred in a single charging event[36]

2.5 Case study: assessment of adaptability of a prototype distribution

transformer under future EV scenarios

After introducing the assessment strategy and defiEYigscenaris, the adaptability of a

prototype distribution transformer is assessed under defiWescenarig as a demonstration.

2.5.1 Assessment of hegpot temperature, logs-life and expected lifetime

Firstly, the hotspot temperature, logsd-life and expected lifetime of the prototype distribution
transformer under defindelV scenarig are assesseue to the uncertainty brought by EVs
charging, MonteCarlo algorithms are applied for the simulation, and the flow chart of the
simulation is presented figure2.8. Basically, charging load profiles of individual EVs are
generated first with stochastically defined uncertainties including EVs type, charging power,
start charging time and SOC transferred. Then the final load profile is created ly @ol@ith

individual EVs charging load profiles and the base load profile. The base load profile in this
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section is from a September day of the substation in which the prototype transformer is installed.
The hotspot temperature is calculated with the refirthermal parameters under the final load
profile. The expected lifetime is estimated assuming the load repeats itself for the whole year.
This process repeats itself for 5000 times so that 5000 sets of results will be generated. At last
statistical analyis is conducted on the results in terms of peak loads, peakpdiot

temperatures and lifetimes.
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Figure 2.8: Flow chart of Monte-Carlo simulation to determine hotspot temperature and lifetime of prototype

distribution transformer under EV scenarics

The peak load and peak ksjiottemperature are of key concesimce they may lead to
immediate failure of tranefmers due to bubbling. Therefore, statistical analysis is conducted
to investigate the potential range of peak load andpot temperature as shownTiable2-10.
Table 2-10 presents the peak load and peak-dpuit temperature ranges under thieaé
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scenarig. It is observed that EVs charging load significantly increases tkdqashand peak
hot-spot temperaturdhermal parameters refined byrvefitting andcalculating methoslare

applied for the assessment.

Comparing to the BAU scenario, the peak load is increased at least by 39.7% and 93% under
High-range and Extremeange scenarios respectively. The peak-$mwit temperature is
increased at least by 23.7% and 55.5% respectively with -¢ittimg method. The peak load

ranges are almost the same for tefinemenimethods. In terms of peak kgpot temperatures,
thermal @rameters refined by the calculated method lead to underestimatespohot
temperatures when the load is lower than the rated level, and overestimatgubthot
temperatures during overloads. Therefore, Under BAU scenario, the pesgohtémperature

of thermal parameters refined by calculating method is lower; but under Extaege
scenario, when the transformer is heavily overloaded, the peapbiotemperature of thermal

parameters refined by calculating method is much higher.

Table 2-10: Comparison of peak load and hotspot temperature ranges undelEV scenarics with thermal parameters
refined by two methods

. Refinement EVs penetration Peak load Peak hotspot
EV scenarics method level (%) range (p.u.) temperature range (C)
. Curvefitting 65.1
BAU scenario Calculating 0 0.73 6067
High-range Curvefitting 32 [1.02, 1.28] [80.5, 90.1]
scenario Calculating [1.01, 1.29] [79.2, 92.0]
Extremerange Curvefitting 58.9 [1.41,1.79] [101.2,115.7]
scenario Calculating ' [1.40, 1.78] [110.2, 135.4]

Figure2.9 andFigure2.10 display the CDF plots of peak load and peakdpait temperature
resgectively under Higkrange and Extremeange scenarios with two refinement methods.

T~
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N N
\

Accumulated probability

—High-range scenario

— Extreme-range scenario

1 11 1.2 13 14 15 1.6 1.7 1.8
Peak load (p.u.)

Figure 2.9: CDF of peak loads underEV scenarics
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-----Calculating method (Extreme-range scenario)
-----Calculating method (High-range scenario)
——Curve-fitting method (Extreme-range scenario)
——Curve-fitting method (High-range scenario)
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Figure 2.10: Comparison of CDF of hotspot temperature underEV scenarics with thermal parameters refined by
two methods

According to the CDF plots, it can be seen that overloading is guaranteed under both of High
range and Extremeange scenarios. Especially undetrtEmerange scenario, the peak load
has over 90% probability to reach the restricted value of 1.5 p.u. given by IEC loading guide
for normal cyclic load11]. Fromahos p ot t e nywiatofaiew theeh@ylsest hetpot
temperature that can be reached under Higinge scenaricare 90.1C and 92.0C
respectively withcurvefitting and calculating refinement methodghich arelower than the

rated hotspot temperature of 98C under ratéoad that is given in the IEC loading guide. It
means that under Higtange scenario, the transformer is always waded, and the expected
lifetime will be longer than the value recommended in the loading guide which is assumed
under a constant hapd temperature of 98C. However, under Extrerage scenario, the
peak hotspot temperatusxan go up to 115.7 €@nd 135.4€C respectively with curvitting

and calculating refinement methodsmeans that during theVs charging the transformer
ageingwill be accelerated. Nevertheless, the daily Hokkfe still could be compensated by

the underageing during the ofpeak time, when the hgpot temperature is much lower than

the rated value of 98C. Therefore, whether the long term thermal ageatgéderated or not
under Extreme&ange scenario cannot be determined solely by the peapbbtemperature,

but further calculations are required.

It should be noted that this conclusion may not be representable for other transformers. The
rated hotspot temperature rise is only 65.1 K for the demonstrated transformer, which is much
lower than 78 K that is limited by IEC loading guide, hence the thermal design of this
transformer is good. For other transformers whose thermal design is not as gosdas,thi

there may be a higher risk to operate under Hagige scenario. Therefore the methodology
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of assessing the thermal performance urtlérscenaris introduced here should be applied

for individual distribution transformers to investigate their adaipties undereEV scenaris.

The lossof-life and expected lifetime is calculataed shown imable2-11.

Table 2-11: Comparison of assessment of long term thermal ageing und&V scenarics with thermal parameters
refined by two methods

EV scenarics Refinement EVs penetration Daily lossof-life Expected lifetime
method level (%) range (p.u.)* range (p.u.)+
BAU scenario Curvefitting 0 0.009 111
Calculating 0.005 200
High-range Curvefitting 32 [0.025, 0.045] [22.5, 40]
scenario Calculating [0.019, 0.041] [24.3, 53.2]
Extremerange Curvefitting 58.9 [0.151, 0.476] [2.1, 6.7]
scenario Calculating [0.325, 3.27] [0.3, 3.1]

*: 1.0 p.u. is under constant 98€ hspot temperature according to IEC loading gyiig
*: The base value is set as 17.12 years.

With curvefitting refinement methodhe daily lossof-life is increased by a factor as larger as

53 (0.476 compared to 0.009) under Extraamege scenario, and the expected lifetime is
reduced by up to 98% (2.1 compared to 111) with EVs charging. Therefore, fromtarong

failure perspectie, EVs charging will significantly reduce the thermal life of distribution
transformers, and adaptive asset management strategies must be changed to face the upcoming

EV scenaris.

Since underestimated hgpot temperature tend to be obtained under BAdhaco with the
calculating method, the loss-life is correspondingly underestimated, which leads to an
overestimated lifetime. Under overloads, the calculating method tends to give overestimated
hotspot temperatures. Therefore, the resultant-dédde is much higher than that of the
curvefitting method, and the resultant lifetime is correspondingly lower under Exiramge

scenario.

2.5.2 Determination of failure probability und&V scenaris

Failure probability is determined for the prototype tramsfr with two refinement methods
under threeEV scenaris, i.e. BAU, Highrange and ExtremeangeEV scenaris. The load

and ambient profiles of the day as used in the-¢ddde calculation example are used here.
The measured hapot temperaturef the day ranges from 43.1C to 64.6C, and has an
average value of 53.8€CBubbling inception temperatures are calculated by Equé2dr),

where the gasontent used is 9%, and the oil depth used is 1.57 m which is measured from the
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design diagram of the distribution prototype transformer. The moisture in paper is calculated
by Equation(2-18) to Equation(2-21). 53.8€C, the average hespot temperature of the day, is
used for the calculation ahoisture in paper. Various values of moisture in oil are used t
reflect different conditions (wetness) of the insulation system. These values are given under
the sampling temperature of 20€C, since IEC 60432] suggests to normalise water content
under 20T and gives a guideline to interpret the data for the assessment of the condition of the
insulation systemResultant bubbling inception temperatures are showialte2-12, which

also includes the various moisture in oil conditions and resultant moisture in paper values.

To determine the failure probability, the probability of the-$dt temperature exceeding the
bubbling inception temperature is estimated. A simple way is to achieve the failure probability
through the CDF of peak hgpot temperature as the example smowFigure 2.11 (with
curvefitting refinement method)where the failure probability can be found by the cross point
between bubbling inception temature and the CDF of peak fsptot temperatures. Therefore,

in the example ifrigure2.11, the failure probability under Higlange and ExtremengeEV
scenarig are found as 0 and 31.5% when the bubbling inception temperature is 108.8€C, which
is calculated with a moisture in oil of 17.5 ppm under 20€C by Equations {earm) to (2-21).

Bubbling inception temperature (°C)
80 85 90 95 100 105 110 115 120

1.0 —T— ———— —T T - 0.0
Bubbling inception temperature 1

0.9 fincen & 0.1
4 High-range scenario 4

0.8 Extreme-range scenario 40.2

0.7 - [ = = 2 033

0.6 - 0.4

0.5 - 0.5
0.4 - 0.6

0.3

Failure probability

- 0.7

0.2 _— of 108.8 °C leads to a failure

probability of 31.6% under

0.1 Extreme-range scneario - 0.9

Accumulated probability of peak hot-spot temperature

0.0 T T T T T T T 1.0
80 85 90 95 100 105 110 115 120

Peak hot-spot temperaure (°C)

Figure 2.11: Example of determination of failure probability under EV scenarics

Determined results of moisture in paper, bubbling incepéioperature and failure probability

under thre€=V scenaricare shown inmable2-12.
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Table 2-12: Comparison of assessment of short term failure probability undeEV scenarics with thermal parameters

refined by two methods

Moisture in oil @ 20 € 25 5 10 15 17.5 20 25
(ppm) _
Perce”tage((;?) thesaturati¢ 45 | 91 | 182 | 27.3 | 31.8 | 36.4 | 455
Cond|t|on5632c§c;rdlng 1B by | Moderate wet| wet Extreme wet

Moisture in paper (%) 154 | 244 | 388 | 5,09 | 565 | 6.17 | 7.17
Bubbling inception 154.99| 137.90| 121.80| 112.47| 108.80| 105.48| 99.39
temperature (C)

Failure probability (%)

BAU scenario %tlilrr\g 0 0 0 0 0 0 0

Calculating 0 0 0 0 0 0 0

High-range %t‘:lrr‘]’g 0 0 0 0 0 0 0

Scenano  "calculating] 0 0 0 0 0 0 0
Extreme %t‘:lrr‘]’ge 0 0 0 1 | 315 | 89 | >99
fange scenant=aiculating| 0 0 | 443 | >99 | >99 | >99 | >99

With curvefitting refinement methodhe prototype distribution transformer only faces failure
risks under ExtremeangeEV scenarioAlso, the failure starts to occur when the insulation is
reaching wet status according to IEC 60422. The threshold galine moisture in oil is 15

ppm @ 20 €, above which the failure probability increases significantly with the moisture in
oil. When the moisture in oil reaches as high as 25 ppm at 20C, the failure is almost guaranteed

under the Extremeange scenario.

With calculating method, same as the ctiittehg method, no failure risks are faced by the
prototype transformer under BAU and Higinge scenarios. However, under Extreruege
scenario, since the hepot temperature is overestimated during overloagsthermal
parameters refined by the calculating method, higher failure probabilities are obtained with the

calculating method when the transformer 6s

However, this conclusion is only applicable for the investigated pmotjistribution
transformer. For other distribution transformers in the population, the failure probability should

be assessed by their own loading condition, thermal performance and wetness status.
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2.6 Summary

In this chapter, an assessment strategy is int@dland applied for adaptability of a prototype
distribution transformer unddtV scenaris in terms of its long term ageing and short term
failure risks. The strategy contains two parts, i.e. thermal modelling and thermal failure
modelling. Thermal modihg aims to calculate transformer kegot temperature, lose and

lifetime as accurate as possible by refining thermal parameters. Thermal failure model aims to

estimate the failure probability due to bubbling ungerscenaris.

Two methods are proged for the refining of thermal parameters. Comparison of two methods
indicates that curvétting method is preferred than the calculating method for better accuracy
when calculating hespot temperature under either heat run test loads or dynamic loads.
However, curvditting method requires measured +spot temperature during heat run test

which is often not available for existing distribution transformers.

Failure probability due to bubbling is defined as the probability ofspot temperature
excegling bubbling inception temperature. A method of estimating bubbling inception
temperature is introduced in this chapter and it requires the moisture in paper as input, which
can be estimated by moisture in oil assuming the equilibrium state of moidinezbeil and

paper is reached during daily operation and EVs charging of distribution transformers.
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3. Assessment of distribution transformer population under EV

Scenarios

The strategy of assessing adaptability of distribution transformers E\descenaris is
applied on a group of selected transformers from the distribution transformer population of

ENW for the demonstration purpose.

Different from the prototype transformedemonstrated in Chapter 2, most existing
transformers in the population do not have measured load and ambient profiles. Therefore,

alternative modelling approaches to estimate the load and ambient profiles are introduced.
3.1 Load modelling method for operating individual distribution transformers

A load modelling tool is required to construct the load profile of each individual distribution
transformer with reasonable accuracy for the-dpmit temperature calculatiomhen the

measurements are not dahie

In the England load profiles of electricity customers in the distribution level are ddfamrs

eight Profile Classeg38]. Customers in the distribution network are accordingly categorised
into eight classes. For each class, nationwideh@lf energy usages have been measured and
collected by Elexon. By analysing thetaayearly hakhour load profiles are generated by
Elexon for a single customer of each profile class. Considering the seasonality of loads in a
year, five sub classes are defined for each profile class, which are spring, summer, high summer,
autumn and wmter. With Elexon profiles, load profiles of one distribution transformer can be
produced by summing up all loads each of which belongs to the eight profile classes.-The sub
load profiles can be obtained by multiplying the number of customer and tlespmmding
Elexon profiles. With the customer number database provided by ENW, yearhobalfoad
profiles of any transformers can be modelled by Elexon profidésipolation can be applied

to generate the minuteased load profiles for the calculatiohhot-spot temperatures.

3.1.1 Accuracy of modelling load profiles with Elexon profiles

Before applyinghis load modelling approach for the assessment of thermal performance, the
accuracy of the approach is investigated by comparing with measured load data of a group of

distribution transformersBy comparing with available measured load data, which afe hal
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hour load of 7289 days from 84 distribution transformers, errors of loads modelled by Elexon

profiles are statistically analysed, where the results are showiraple3-1.

Table 3-1: Error analysis of loads modelled by Elexon profileof 84 investigated distribution transformers

Underestimation Overestimation
Error <-60% | <-40% | <-20% | <0% | >0% | >20% | >40% | >60%
Percentage of dat{ 11.3% | 31.9% | 53.9% | 76.7%| 23.3%| 6.9% | <1% | <0.1%

Results show that Elexon profiles tend to underestimate the load data of this group of
transformers. Underestimation is observed on 76.7% of compared data, and the error can be as
large as60%. To calibrate the load modelled by Elexon profiles, the meaniestead of the
maximum error should be utilised as a conservative indicator to reflect the wide error range.
The mean error is observed-89.6%. Therefore, a calibration factor of 1.3 is introduced in

this work when using Elexon profiles to modehblds of distribution transformers that do not

have recorded load data.

3.2  Modelling of ambient temperature

Ambient temperature is one major environmental factor for the determination of tepdtot
temperature of transformers. Ideally, for dynamic consideration, such asEvdeenaris,

actual ambient temperature profiles should be applied when calculdtenghotspot
temperature with IEC thermal model. However, actual ambient temperatures are not available
for transformers that the surrounding ambient temperatures are not monitored. In this case, a
constant equivalent temperature can be taken as amhmepérsure according to the IEC
loading guidd11].

The equivalent temperature is yearly weighted ambient temperature and is designed as a
constant, the fictitious ambient temperature that causes the same ageing as the variable
temperature does during the load cycle. It can be derived based on E¢sgtioaised on the
assumption that the real ambient temperature varies sinusoidally during the loadL&lycle
Where gk is the equivalent ambient temperatuggs is the yearly average temperature and

gma ma» is the monthly average temperature of the hottest month.

ge= ga ©.01 2 (3 max }r&j"BS (3-1)

38



electr-icityy

y
er

The Universit
of Manchest

3.2.1 Determination of yearly weighted ambient temperature

The value is determined by Equati@) with historical monthly ambient temperature data
since 1910 in northwest England obtained from Met OffaS}.

The yearly average temperature is the mean value of annually averaged ambient temperatures
since 1910 in northwest England, which is 12.0 €. The monthly average temperature of the
hottest month is the mean value of temperatures of the hottest month&lcand the value

is 19.2 €. Consequently, the weighted ambient temperature is obtained with as 13.4 C.
3.2.2 Correction of ambient temperature for transformer enclosure

The other factor of the environmental element considered is the transformer enSomee.
distribution transformers are mainly ONAN cooled, effective air flows are key to the heat
dissipation. Therefore, when a distribution transformer is not installed in the open air, the
enclosure wouldveaken the heat dissipation and the transformearldvexperience extra
temperature rises on tlaenbient temperature am@éncerated topoil rise. Ideally, the value of

the extra temperature rise should be determined by tests, however, considering the general
unavailability of such tests,IEC loading guideprovides values for different types of
transformer enclosures as showrTable 3-2. The extra temperature rise of the rateddop

temperature rise is half of ticrease in the yeagriweighted ambient temperature.

Table 3-2: Correction for increase in ambient temperature due to enclosurgll]

Nurmber of _ Correctiorj to be added to
weighted ambient temperature (K)
Type of enclosure transformers -
installed Transformer size (kVA)
250 500 750 1000
, 1 11 12 13 14
Undergro%r;?]t\ﬁzijigiwnh natural 5 12 13 14 16
3 14 17 19 22
Basements anduildings with poor L ! 8 9 10
natural ventilation 2 8 9 10 12
3 10 13 15 17
Buildings with good natural ventilation 1 3 4 5 6
and underground vaults and baseme 2 4 5 6 7
with forced ventilation 3 6 9 10 13

In this work, when assessing individual transformers of the population, the type of enclosure
is unknown for indoor installed transformers. Therefore, it is all assumed that all indoor

installed transformers are in basements or buildings with poor na@ntdhtion.

39



electricityy

y
er

The Universit
of Manchest

3.3 Moisture content in oil

Apart from load and ambient profiles for the calculation ofdpmit temperature, moisture in

oil is also required for the estimation of bubbling inception temperature, which could be
obtained by oil test. Howeverudto general unavailability of oil test data, only a limited
number of transformers have records of oil test information among the whole population. Oil
test data of around 2000 transformers in the population are found. The earliest data found are

from early1990s, and the latest data found are from 2012.

By analysing the moisture in oil data, it is expected to find an empirical model to link the
moisture in oil with the transformer age, so that it would be possible to estimate the moisture
in oil for everytransformer of the population with its transformer age when the measured value

is not available.
a. Correcting moisture in oil to 20 €

In order to link the moisture in oil values to the oil aging status, all measured values are
corrected to a standard sampling temperature of 20€C which is recommended in IEC 60422
[40] with Equation(3-2). Where PPM2o is the moisture in oil at 20C;PPMr is the moisture

in oil under temperatur€in °C.

PPM20= PPMr .24 &0047 (32

In the oil test database, moisture in oil is given in ppm with the date when the oil sample is
taken, while the sampling temperature is missing. Since a large numidues$ are greater

than 55 ppm, which is the saturated level of mineral oil under 20€C, it is deduced that the
sampling temperature is unlikely 20C but approximate to the operational oil temperature of

the transformer subject to the olil test.

The operatnal oil temperature of each individual distribution transformer is calculated as the
yearly mean toil temperature with IEC thermal model and yearly load profiles estimated by

Elexon profiles and the corresponding customer information.

One set of genar thermal parameters are applied for the calculation, which are refined based
on extended heat run test data of 20 distribution transformers representing the population.
Information of 20 distribution transformers is presented in the appendix. The methodbd

refining IEC thermal parameters based on extended heat run test data proposed irR@Ghapter
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applied for the refinement. 20 sets of thermal parameters are first obtained for 20 representative
transformers, and the average value of each parametetained to be eventually used for the
calculation of the toil temperature of the population. The full set of generic thermal
parameters applied for the population for de
Table3-3.

Table 3-3: Refined representative thermal parameters for distribution transformer population

R Dgor gr H to fw X y K11 k21 k22
8.7 50.6 | 16.8 | 1.1 180 | 114 | 0.8 | 1.6 1.1 1 2

Resultant mean yearly tagpl temperatures are presented-igure 3.1, which shows that all
moisture data recorded in the database are sampled over 20€, so when converted to 20€C with

Equation(3-2), all moisture values will be reduced after correction.
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Figure 3.1: Mean yearly top-oil temperature of distribution transformer population calculated with Elexon profiles

The praess of accumulation of moisture in transformer oil is complex, which can be affected
by many factors such as installation conditions, loading conditions, transformer design and age.
By correcting to 20€C with topoil temperatures calculated by Elexon [deoflerived yearly

loads, the effects of loading conditions are considerégeliminated A comparison between
original measured moisture in oil values and corrected values is shdvwguire 3.2. It can

firstly be seen that corrected values (blue marks) are lower than original values (red dots).
Secondly, a clear increasing trend with transformer oil age can be observed on ditleer of

original or the corrected values.
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Figure 3.2: Originally measured moisture in oil data and corrected values of distribution transformer population

The corrected moisture values are investigated in tefnrstallation locations, transformer

design and age respectively on the accumulation of moisture in oil.
b. Effects of variation of transformer design

To investigate the effects of transformer design, transformers are grouped in accordance to
their manufacturers. Moisture in oil data of transformer from three most popular manufacturers
are compared. Due to the distinguished oil age distribution ofrteeafacturers, transformers

within age group of 20 years to 40 years are selected for the comparison. The mean values of
moisture in oil data for this age group are 13.5 ppm, 11.7 ppm and 17.7 ppm for Ferranti,
Lindley Thompson (LT) and South Wales Switehg (SWS) transformers respectively.

SWS transformers have highest mean value of moisture in oil for this age group, which
indicates SWS0s design may be worse and | es
accumulation during the transformer ageirtdowever, due to the limited number of
transformers (only 34 transformers contained in this age group for SWS), this conclusion is

still suspicious. For the other two manufacturers, 1.8 ppm difference is not significant
considering the range of the varatiis between 2 ppm to 50 ppm. Therefore, based on the
investigation at this stage, no conclusions can be drawn on how the variation of transformer

design would affect the moisture accumulation irdailing the transformer ageing.
c. Effects of installatiorconditions

It is known that transformer enclosure would cause extra rises in the ambient amd top
temperatures, and how it impacts the moisture accumulation is investigated by comparing the
corrected moisture data of indoor and outdoor installed transfs as shown iRigure3.3.

According to the results, outdoor installed transformers tend to have higher moisture in oil
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values. The average moistun oil value of outdoor transformers is 9.8 ppm higher than that

of indoor transformers.
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Figure 3.3: Corrected moisture data of indoor and outdoor installed distribution transformers

d. Estimate ofmoisture in oil with transformer oil age

The purpose of the analysis of moisture in oil data is to build an empirical model to estimate
the moisture in oil with transformer oil age for transformers that do not have measured moisture
in oil data. Since thprevious analysis shows that transformer enclosures impact the moisture

accumulation in oil, separate models should be built for indoor and outdoor transformers.

Linear regression is applied to fit the moisture in oil data of indoor and outdoor traasform
separately. Intercepts of both fittings are fixed at 5 ppm when the transformer age is 0 in order
to reflect the dry condition of the oil in new transformers. The reason of utilising the linear
regression instead of ndimear regression is that duettee dispersity of the data, applying a
more complexed nelinear equation does not improve the goodness of fitting comparing to
applying a simple linear equation. Either of linear or-finear regression only gives out a
goodness of fitting no better th#®.3. Therefore, the simpler linear regression is selected for
the fitting.

Fitting of indoor transformers is presentedrigure3.4. In order tocapture the variation of the

data along the fitted line, a random variation is defined to follow the normal distribution. The
standard variance of the normal distribution is obtained by finding the upper and lower lines in
Figure3.4, which indicates the range that covers 90% of all data. The upper line is the fitted
line plus three times of the standard variance, and the lower line is the fitted hing tmiee

times of the standard variance. The standard variance is found by increasing from a small

number until the number of data between the upper and lower lines reaches 90% of all data. As
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a result, the equation to estimate the moisture in oil datadobr transformers is obtained as
Equation (3-3), whereT is the transformer aged?PMn is the moisture in oil of indoor

transformers under ageand N(0O, 3) is a normal distribution with mean of O ppm and standard

variance of 3 ppm.
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Figure 3.4: Fitting of moisture in oil data of indoor distribution transformers

PPMn=5 ©.23 F N{0,3 (3-3)

Similar to indoor transformers, the fitting is conducted to outdoor transformers as shown in
Figure 3.5, and the resultant equation is shown as Equdtsef). Comparing to indoor
transformers, the slope of the linear line fitted to outdoor transformers is significantly increased
(0.35 ppm/year comparing to 0.23 ppm/year), which indicates thenatation rate of outdoor
transformers is much larger than that of their indoor peers. In addition, the standard variance
of outdoor transformers is 5 ppm, while it is 3 ppm of indoor transformers, which indicates the

moisture in oil of outdoor transformeaise more dispersed and uncertain to predict.
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Figure 3.5: Fitting of moisture in oil data of outdoor distribution transformers
PPMbut=5 ©.35 ¥ N{0,5 (3-4)
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With the models derived above, moisture in oil value can be estimated for any distribution
transformers in the population by the transformer age. Resultant moisture in oil can be applied
for the calculation of moisture in paper and the obtainedtareign paper will be used for the
calculation of bubbling inception temperature with the bubbling inception temperature model.
Eventually, the bubbling inception temperature will be utilised for the estimation of failure

probabilities of distribution trasformers undeEV scenaris.

Accumulation of moisture in oil is a complex process, and a simple linear equation used for
the regression in this stage is only to attempt to fit the measured data of a small group of
sampled transformers and to roughly captihe trend. Considering the fitted data are the only
available data of the population, the method introduced here is necessary for the prediction of
moisture in oil of transformers without measured values in spite of its insufficiency. Potential
future work of deriving a more sophisticated model for the prediction of moisture in oil will be
extremely beneficial so that the moisture in paper and eventually the failure probability under

EV scenaris can be estimated more accurately.
3.4 Assessment of distributi on transformer population under EV scenarios
3.4.1 Selection of transformers for demonstration

150 transformers are selected from the population for the demonstration of the assessment
strategy. The transformer age is controlled in the selection so that the wide age profile can be
covered. Three age groups are defined as 0 to 20, 20 to 40 ané04¥etars old transformers.

For each age group, 50 transformers are randomly selected from the popéigtioe 3.6

shows age and yearly peak loatkdaf the selected transformers. The load of each transformer

is calculated with its customer information and Elexon profiles, and the calibration factor of

1.3 is applied.
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Figure 3.6: Distribution t ransformers selected for demonstration

3.4.2 Long term risks unddEV scenaris

electr-icityy

Yearly lossof-life is calculated for each transformer under tHedescenaris. Firstly, yearly

lossof-life, mean and peak hapot temperatures are calculatedier BAU sceario asshown

in Figure3.7.
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Figure 3.7: Yearly lossof-life, mean and peak hotspot temperaturesunder BAU scenario (No EVs penetration)

According to the IEC ageing model, the laddife is nonlinearly associated with the hepot

temperature, and results show that the mean and peak yeadgdidemperatures are well

below the 98€ which is thehot-spot temperature under a constant rated load representing a

rated los=of-life. Therefore, the resultant lesé$-life is much lower than the rated value. The

unit of the yearly los®f-life used here is year per year, which means the equivalent years o

ageing in a yearly operation. The highest yearly-tifdife is obtained as 0.03 year per year

under the peak and mean {spiot temperatures of 87.5 € and 59.3 € respectively. Statistical

analysis of los®f-life, mean hotspot temperature and peaki{spot temperature under BAU

scenario are demonstratedTiable3-4. More than 97% of the transformers have a yearly loss

of-life lower than 0.01 yeaper year. Mean hegpot temperatures of 96% transformers are

below 50 €, and peak hespot temperatures of 94% transformers are below 70C.

Table 3-4: Statistical analysis on los®f-life, mean hotspottemperature and peak hotspot temperature under BAU

scenario

Loss-of-life (year per year) [0.0001, 0.001) [0.001, 0.01) [0.01, 0.1)
Percentage (%) 56.7 36 7.3
Mean hotspot temperature (€C) [20, 50) [50, 70) [70, 90)
Percentage (%) 96 4 0
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Peak hotspottemperature (C) [20, 50) [50, 70) [70, 90)
Percentage (%) 67.3 26.7 6

The lifetime of a transformer will be increased by a factor equal to the reciprocal of its yearly
lossof-life comparing to the expected lifetime of a constantly rated loaded transformer.
Assuming the lifetime of a constantly rated load distribution toansér is 17.12 years
according to IEC loading guidd.1], the expected lifetimes of the group of transformers will

be as large as over 100 years. In this case, the value itself is praatieahingless, however,

it indicates that these transformers will not fail due to the long term thermal ageing under

current loading conditions before they are replaced or fail due to other causes.

To investigate the lossf-life under Highrange and ExemerangeEV scenaris, Monte

Carlo simulations are conducted so that the randomness of EVs charging load is taken into
account. Results of the load, Fegot temperature and les§life from all repetitions are
averaged and outputted as the final ressfalt each transformeA statistical analysis of yearly

RMS and peak loads under thrieé¥ scenaris is presented ifable 3-5, which shows the

percemages of transformers in different load ranges.

Table 3-5: Statistical analysis of yearly RMS and peak loads under threEV scenarics

RMS load (p.u.) [0, 0.3) [0.3, 0.6) [0.6, 0.9)
BAU scenario 46% 51.3% 2.7%
High-range scenario 34.7% 59.3% 6%
Extremerange scenario 28.7% 56% 15.3%
Peak load (p.u.) [0, 1.0) [1.0, 2.0) [2.0, 3.0)
BAU scenario 98% 2% 0
High-range scenario 58% 41.3% 0.7%
Extremerange scenario 30% 57.3% 12.7%

The number of overloaddachnsformers is increasing with the penetration of EVs. Under BAU
scenario, only 2% transformers are overloaded, while under-tdighe and Extremeange
scenarios, the percentage increases to 42% and 70% respectively. Furthermore, 12.7%
transformers aredremely overloaded under Extresrenge scenario, where peak load exceeds

2.0 p.u. Depending on the penetration level, the peak load can be doubled or tripled. However,
as to the yearly RMS load, since the huge peak load is compensated by the low adlley lo
values during a day, the increase of RMS load caused by EVs charging load is relatively less
than the peak load. For 150 demonstrated distribution transformers, the peak load increases by
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77 % and 146% in average under Higimge and ExtremeingeEV senaries respectively;

and as a comparison, the yearly RMS load only increases by 16% and 33%.

A statistical analysis of yearly mean and peakdpuit temperatures under thi€¥ scenaris

is presented inTable 3-6. It can be seen the peak {spot temperature is significantly
influenced by EVs penetration. Under BAU scenario, the highest peapbbtemperature is
87.5€C, and the majority of transformers (85.3%) are operating below 60C. Under-tigbe
scenarip more than half of all transformers have peakdpuit temperature higher than 60C,
and there are 4% transformers having peakspot temperatures over 120€C, which might
trigger a potential failure. Under Extrerm@nge scenario, as much as 27.3% t@nsérs have

peak hotspot temperatures over 120C.

Table 3-6: Statistical analysis of yearly mean and peak hegpot temperatures under threeEV scenarics

Mean hot-spot temperature (C) [6, 40) [40, 60) [60, 80)
BAU scenario 76% 24% 0
High-range scenario 61.3% 37.3% 1.4%
Extremerange scenario 48.7% 47.3% 4%
Peak hotspot temperature (C) [0, 60) [60, 120) | [120, 180)| [180, 240)
BAU scenario 85.3% 14.7% 0 0
High-range scenario 43.3% 52.7% 4% 0
Extremerange scenario 20.7% 52% 24% 3.3%

For 150 demonstrated distribution transformers, the peaggutttemperature increases by 47%
and 100% in average under Higdnge and ExtremengeEV scenaris respectively; and as

a comparison, the yearly average value only increases by 6% and 13%. Results show that even
the peak hespot temperature can go up to 230€ according to the calculation; the highest
yearly mean value is only as large as 72€C. Sitipeak temperature only lasts for few hours
during a day, it may contribute less to the yearly -lofskfe than the mean temperature.
Therefore, the dominant value will be the yearly mearspot temperature in terms of yearly
lossof-life, and EVs chaying only poses a limited impact on it. Consequently, the yearly loss

of-life is only limited affected by the EVs penetration, as showfigare3.8.
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Figure 3.8: Yearly lossof-life under three EV scenarics

Table 3-7: Statistical analysis of yearly losof-life under three EV scenarics

Lossof-life (year per | [0.0001, | [0.01, 0.1)| [0.1,1) | [1,10) | [10, 100)| [100,
year) 0.01) 10000)
BAU scenario 92.7%% 7.3% 0 0 0 0
High-range scenario | 78.7%6 11.3% 4.7% | 5.3% 0 0
Extremerange scenari{ 54% 19.3% 7.3% 6% 4% 8%

A statistical analysis on the les§life under three scenarios is displayedlable 3-7. The
majority of investigated distribution transformersi® overaged even under Extremnange
EV scenario Under HighrangeEV scenarig only 8 out of 150 transformer$(3%) have a
yearly lossof-life larger than the rated value. Under ExtrerargeEV scenaripthe number
is 27 out of 150 transformers (18%). The reason is that despite of the huge peak load and peak
hotspot temperatures, the yearly laddife is very much compensated by the-p#ak time,

when the load and hapot temperature are much lower than the peak time

Further investigations irFigure 3.9 show that all of these owaged transformers are
possessing peak hspot temperatures over 130 €. Under sucigh values of hespot
temperature, the top concern will be the short term failure instead of long term thermal ageing.
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Figure 3.9: Peak hotspot temperatures of overaged distribution transformers

Therebre, it might be concluded that EVs charging would be less concerned on the acceleration
of thermal ageing and the reduction of transformer lifetime than the immediate failure due to
bubbling, since the peak load and-kpbt temperature will be compensht® the low values

during the offpeak time and eventually lead to a moderate ageing even under high EVs

penetration such as ExtrerrengeEV scenario
3.4.3 Short term risks unddtV scenaris

Short term risks of distribution transformers unlgrscenaris are essentially due to bubbling.
According to the assessment strategy proposed, the bubbling inception temperature is
dominantly determined by the moisture in paper insulation, which is derived by the moisture
in oil of the transformert-igure 3.10 shows the moisture levels respectively in oil and paper
which are derived by the models introduced in Chapter 2. In accordance to the moisture in oil
mode] i.e. Equatior{3-3) and(3-4), apart from the linear increase with agear@dom variation

is considered. Therefore, for each transformer, different values of moisture in oil are generated
for each repetition during the Mor@arlo simulation. In addition, since the transformer age is
the only input data for estimation of moisgun oil or paper, same values of moisture in oil or
paper are applied for the same distribution transformer under diffékéiscenaris in one
simulation. The data plotted are mean values from all repetitions of simulations of each

transformer.
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Figure 3.10: Moisture in oil and paper of selected transformers

Results inFigure 3.10 show that a noticeable deviation can be observed between indoor and
outdoor transformers in terms of either moisture in oil or paper. The derivation is increasing
with the transformer age. Fransformers over 50 years old, the deviation could be as large as
7 ppm and 2.5 % for moisture in oil and paper respectively. These significant deviations imply
that outdoor transformers tend to have lower bubbling inception temperatures, whichds indee

observed in the following analysis.

Based on the derived moisture in paper, the bubbling inception temperature is calculated and
compared with the peak hepot temperature as shown kigure 3.11. Since the hespot
temperatures of each repetition during the Mabdelo simulation are different due to the
randomness of EVs charging load, the data plotted are mean values of all repetitions of each

transformer.

Figure 3.11: Peak hotspot temperatures and bubbling inception temperatures under thre&V scenarics
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